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Abstract 
Teacher placement is a combinatorial optimization problem in educational management that requires 

simultaneously satisfying teacher qualifications, school requirements, geographical constraints, and personal 

preferences. As the scale of educational systems grows, manual assignment becomes impractical, and the 

problem’s NP-hard nature necessitates efficient computational approaches. This study applies a Genetic 

Algorithm (GA) framework to evaluate the effectiveness of four crossover operators, including Single-Point 

Crossover (SPX), Two-Point Crossover (TPX), Cycle Crossover (CX), and Ordered Crossover (OX) for solving 

the teacher placement problem. The GA uses permutation encoding, roulette wheel selection, and partial shuffle 

mutation, and operates on real-world data from the Magelang Regency Education Office, comprising 636 teachers 

and 106 schools. The objective is to minimize the total commuting distance between teachers’ residences and 

assigned schools under varying mutation-to-crossover probability ratios (1:20 to 1:100). Experimental results 

show that OX consistently produces the best solutions, achieving the lowest average fitness value (10,301.63) 

across all configurations, followed closely by CX. In contrast, SPX and TPX demonstrate performance degradation 

at higher crossover probabilities, likely due to their inability to preserve valid permutations. Statistical analysis, 

including ANOVA and Kruskal–Wallis tests, confirms significant differences in performance, reinforcing the 

superiority of permutation-preserving crossovers. These results provide actionable guidance for designing 

intelligent teacher placement systems and selecting optimal GA operators for complex, real-world allocation 

problems. 
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1. Introduction 

Teacher placement represents one of the most strategic yet complex challenges in 
modern educational resource management. The effectiveness of teacher deployment not 
only influences the quality of teaching and learning but also directly impacts the operational 
efficiency of educational institutions [1]. This process requires decision-makers to assign 
teachers to schools in a way that optimally matches their subject expertise, pedagogical 
competencies, and personal preferences with the specific needs of institutions, all while 
satisfying geographical, regulatory, and policy constraints [2]. As educational systems 
expand, the sheer number of teachers and schools involved creates a combinatorial 
explosion in possible allocations. This complexity makes manual assignment methods not 
only inefficient but also prone to bias and suboptimal outcomes. Furthermore, the necessity 
to ensure equity in teacher distribution across urban and rural regions, which often with 
limited transportation infrastructure. 
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The Teacher Placement Problem (TPP) is formally recognized as an NP-hard 
combinatorial optimization problem [2]. This means that the computational effort required 
to identify the optimal allocation grows exponentially with problem size, making exact 
methods impractical for large-scale scenarios. Traditional deterministic optimization 
approaches, such as Integer Linear Programming (ILP) or Constraint Satisfaction Problems 
(CSP), can guarantee optimality for small instances but quickly become computationally 
infeasible as the number of teachers and schools increases [25][27]. As a result, 
researchers have turned toward heuristic and metaheuristic techniques capable of 
generating high-quality, near-optimal solutions within acceptable computational times 
[2][21]. Among these, Genetic Algorithms (GAs) have emerged as particularly promising 
due to their population-based search structure, which allows them to explore large and 
complex solution spaces effectively while avoiding premature convergence to local optima 
[3][4]. 

Genetic Algorithms simulate the process of natural selection by iteratively evolving a 
population of candidate solutions through three core operators: selection, crossover, and 
mutation [3][4]. The crossover operator is of particular importance because it governs how 
genetic material from parent solutions is recombined to create offspring, thus directly 
influencing the convergence rate and quality of solutions [5][6]. In permutation-based 
problems such as TPP, where each teacher must be assigned exactly once to a school, as 
crossover must preserve element uniqueness and ordering constraints to maintain solution 
feasibility [7][9]. However, not all crossover operators are equally suitable for this task. 
Simple methods like Single-Point Crossover (SPX) and Two-Point Crossover (TPX) are 
computationally efficient and easy to implement but tend to generate invalid permutations 
when applied to ordering problems, requiring repair mechanisms that increase 
computational overhead [7][8]. In contrast, specialized operators such as Ordered 
Crossover (OX) and Cycle Crossover (CX) are explicitly designed for permutation 
problems, ensuring feasibility by preserving the relative order and uniqueness of elements 
[9][10]. 

Despite their theoretical advantages, existing crossover strategies face practical 
challenges when applied to real-world TPP scenarios. For instance, while OX consistently 
outperforms SPX and TPX in problems where the preservation of relative order is crucial, 
it may still suffer from slower convergence when solution diversity decreases in later 
generations [11][13]. Similarly, CX guarantees valid permutations but can sometimes limit 
exploration due to its strict cycle-preservation mechanism, which may hinder the discovery 
of novel solution patterns in complex constraint landscapes [10][18][19]. Moreover, most 
comparative studies have been conducted in benchmark optimization domains such as the 
Traveling Salesman Problem (TSP) [7][11][22], job scheduling [6][13], and routing 
problems [10], rather than in educational workforce allocation. This leaves a gap in 
understanding how classical crossover methods perform under the multi-constraint, policy-
driven, and geographically diverse conditions inherent in teacher placement. 

Recent advancements in adaptive crossover strategies attempt to address these 
limitations by dynamically selecting operators based on their real-time performance during 
evolution [12][14][15]. Methods inspired by reinforcement learning [14], neuro-inspired 
crossover mechanisms [12], and hybrid crossover models [26] have demonstrated 
improved convergence rates and robustness across various optimization problems. 
However, these approaches often require complex parameter tuning, increase algorithmic 
complexity, and demand higher computational resources that can be prohibitive in 
resource-limited educational settings, especially in developing regions [1][25]. Additionally, 
while adaptive methods have shown promise in manufacturing scheduling [23][24] and 
routing optimization [10][13], there is still a lack of empirical evidence validating their 
effectiveness in real-world TPP cases that involve large, geographically dispersed datasets 
and strict equity constraints. 



 

This study addresses these gaps by conducting a comparative evaluation of four widely 
used crossover operators, including SPX, TPX, CX, and OX with incorporating partial 
shuffle mutation [20], roulette wheel selection [16][17], and permutation-based solution 
representation [27]. The experiments use a real-world dataset from Magelang Regency, 
Indonesia, with the objective of minimizing total travel distance between teachers’ 
residences and assigned schools. By analyzing the performance trade-offs between these 
crossover methods in a realistic teacher allocation environment, this research provides 
practical insights for policymakers, educational planners, and software developers. 
Furthermore, it contributes to the theoretical understanding of crossover behavior in multi-
constraint, real-world permutation-based problems, paving the way for future studies on 
adaptive and hybrid genetic operators tailored specifically to the needs of educational 
resource optimization. 

2. Related Works 

Chen and Zhang examined the impact of different crossover operators on GA 
performance across several combinatorial benchmarks and reported concrete differences 
in solution quality and convergence behavior depending on operator choice [5]. They tested 
classical operators (SPX, TPX) against permutation-aware operators (OX, CX) and found 
that permutation-aware operators consistently produced higher-quality final solutions and 
required fewer generations to converge. Chen and Zhang attributed these gains to the 
ability of OX/CX to preserve useful subsequences from parents, which reduced the rate of 
infeasible offspring and the need for expensive repair mechanisms. Their study 
emphasized that the choice of crossover accounted for a substantial portion of observed 
variance in GA outcomes, and they recommended OX-style operators for ordering 
problems where preserving relative order was essential [5]. 

Alzyadat and colleagues performed an empirical comparison focused specifically on 
permutation problems and systematically quantified operator performance across TSP and 
scheduling instances [6][7]. They found that single- and two-point crossovers, while 
computationally inexpensive, produced a high fraction of invalid permutations or required 
costly repair steps that degraded overall runtime performance. In contrast, OX and CX 
maintained feasibility by design and therefore achieved superior net performance when 
runtime and solution quality were considered together. Alzyadat et al. reported that, across 
their testbeds, order-preserving operators reduced the frequency of repair operations by a 
clear margin and improved final tour quality relative to SPX/TPX; their discussion stressed 
that these improvements were most pronounced for larger problem sizes where the cost of 
repairing invalid offspring rose substantially [6][7]. 

Sakhri’s comparative analysis of crossover structures in routing problems offered more 
domain-specific evidence favoring OX in permutation contexts [10]. Sakhri evaluated 
multiple crossover implementations on inventory routing benchmarks and reported that OX-
based configurations produced more stable results across runs and better preserved route 
feasibility under complex constraints. Although Sakhri noted that CX sometimes matched 
or exceeded OX on particular small instances, he concluded that OX delivered more 
consistent performance in realistic, constrained routing scenarios, recommending its use 
where solution interpretability and feasibility were critical. His empirical narrative reinforced 
the practical advantage of order-preserving operators in applied logistics problems [10]. 

Ahmed and collaborators investigated constructive and order-preserving crossover 
variants on standard TSP benchmarks and reported measurable gains in both convergence 
speed and solution optimality when using OX-like operators [11]. They demonstrated that 
offspring generated by order-preserving crossovers retained high-quality parent 
subsequences and thus accelerated the genetic search toward high-quality tours. Ahmed 
et al. also documented cases where constructive crossovers that intentionally selected 
promising subtours outperformed naive operators, and they recommended hybrid schemes 



 

that combined constructive heuristics with OX-style ordering preservation for best practical 
performance on routing problems [11]. 

Recent work advanced adaptive and learning-based crossover selection mechanisms 
and provided strong empirical evidence that dynamic operator choice could outperform 
fixed-operator GAs in heterogeneous problem landscapes. Liu, Zhang, and Wang 
introduced a “Neuro Crossover” scheme that used reinforcement learning to adaptively 
select loci and crossover patterns during evolution; they reported that their approach 
improved solution quality and convergence speed compared with static operator baselines 
on the benchmarks they tested [12]. Similarly, Ardiansyah et al. implemented 
reinforcement-learning-based–based operator selection and showed that adaptive 
selection reduced premature convergence and increased robustness across problem 
instances [14]. Both studies emphasized that adaptive schemes incurred additional 
computational overhead for learning but yielded net gains in solution quality, especially on 
problems exhibiting multimodal fitness landscapes or dynamic constraints that suggesting 
a trade-off between runtime complexity and final solution quality in practice [12][14]. 

Several applied studies validated these methodological findings in educational and 
timetabling contexts. Gunawan and Purwanto adapted OX and CX within GA frameworks 
for exam timetabling and reported that order-preserving crossovers achieved superior 
feasibility rates and comparable or better objective scores relative to classical crossovers 
[18]. Saputra evaluated OX and CX specifically for lecturer placement and found that OX 
yielded more stable assignments and fewer constraint violations in their dataset, supporting 
the transferability of results from routing/timetabling domains to teacher placement 
problems [19]. These applied results reinforced the assertion that permutation-aware 
crossovers minimize infeasibility and constraint-repair overhead in real-world allocation 
tasks. 

Research on mutation and hybridization strategies complemented the crossover-
focused literature by demonstrating the importance of mutation design and operator 
combinations. Wang et al. analyzed partial-shuffle mutation and reported that it preserved 
useful building blocks while injecting sufficient diversity to avoid stagnation in permutation 
problems, thereby improving solution quality when paired with OX-style crossovers [20]. 
Bye, Kim, and Park compared multiple crossover and mutation combinations on TSP 
instances and documented that hybrid approaches (combining order-preserving crossover 
with localized mutation) achieved the best compromise between rapid convergence and 
escape from local optima [22]. The consensus across these studies was that crossover 
selection alone did not guarantee optimal performance; instead, crossover needed to be 
considered alongside mutation, selection, and representation to achieve robust results in 
practice. 

The literature consistently demonstrated that permutation-aware crossover operators 
(OX, CX, and variants/hybrids) outperformed naive SPX/TPX operators on ordering 
problems in terms of solution quality, feasibility, and convergence stability 
[5][6][10][11][18][19]. Adaptive and learning-based operator-selection approaches further 
improved robustness and final solution quality at the cost of additional computational 
overhead [12][14]. Applied evaluations in timetabling and teacher-placement-like–like 
domains confirmed that these algorithmic advantages translated into fewer constraint 
violations and more actionable assignment solutions in practice [18][19]. These collective 
findings motivated the present comparative study to evaluate SPX, TPX, CX, and OX under 
a unified GA framework using real teacher-placement data from Magelang Regency, so 
that empirical operator trade-offs could be measured directly in the educational allocation 
setting. 

 



 

3. Proposed Method 

3.1 Variable Setting 

Natural selection and biological evolution serve as the foundation for genetic algorithms, 

which are population-based optimization techniques. Since their initial proposal by John 

Holland in 1975, GAs have shown themselves to be a compelling method for resolving a 

variety of scheduling, resource allocation, and task assignment optimization issues [3]. 

Selection, crossover, and mutation are the three primary operators in the evolution cycle 

of GAs [4]. Since crossover has a direct impact on people's ability to generate new 

solutions, it is the primary focus of the current study [6]. 

This study compares the effectiveness of four crossover approaches in genetic 

algorithms applied to teacher placement problems using a quantitative framework and 

computational experimentation. The total distance teachers travel to get to their designated 

schools is known as the fitness function. The Magelang Regency Education, Youth, and 

Sports Office (Kantor Dinas Pendidikan, Pemuda dan Olah Raga Kabupaten Magelang, 

Jawa Tengah, Indonesia), which has 106 schools (each with six classes) and 636 teachers, 

is the source of the data. Teachers' homes and schools are separated by predetermined 

distances. 

In this experimental design, the independent variable was the crossover method, which 

included four types: Single-Point, Two-Point, Cycle, and Ordered Crossover. The 

dependent variable was the average total distance of teacher placements produced by 

each crossover method, serving as the primary performance metric. Several control 

variables were maintained to ensure experimental consistency, including the use of Partial 

Shuffle Mutation as the sole mutation method, a fixed population size of 100 individuals, 

and a maximum of 900 generations per run. Additionally, the mutation-to-crossover 

probability ratios were tested at fixed intervals of 1:20, 1:40, 1:60, 1:80, and 1:100, while 

chromosome representation was standardized as a permutation of teacher–school 

assignments. The fitness function consistently aimed to minimize the total distance 

between teachers and their assigned schools, ensuring that all configurations were 

evaluated under identical optimization objectives. 

 

3.2 Proposed Method 

 

For solving the Teacher Placement Problem (TPP) using a Genetic Algorithm (GA) with 

crossover operators, the most important mathematical formulations are those that describe: 

 

1. Chromosome Representation 

A chromosome 𝐶 represents a permutation of teacher-to-school assignments: 

𝐶 = [𝑐1 , 𝑐2 , … , 𝑐𝑛]  
where 𝑐𝑖 is the assigned school for teacher 𝑖, and 𝑛 is the total number of teachers. 

In TPP, this permutation ensures that the school capacity constraints (e.g., 6 teachers per 

school) are respected. 

 

2. Fitness Function 

The objective is to minimize the total distance between all teachers and their assigned 

schools as Equation (1): 

𝑓(𝐶) =∑𝑑𝑖,𝑐𝑖

𝑛

𝑖=1

 (1) 

 



 

where 𝑑𝑖,𝑐𝑖 is the distance between teacher ii and their assigned school 𝑐𝑖. 

Lower 𝑓(𝐶) indicates a better placement. 

 

3. Selection Probability (Roulette Wheel Selection) 

The probability 𝑃(𝐶𝑗) of selecting chromosome 𝐶𝑗 for reproduction as Equation (2): 

𝑃(𝐶𝑗) =

1

𝑓(𝐶𝑗)

∑
1

𝑓(𝐶𝑘)

𝑁

𝑘=1

 
(2) 

 

where 𝑁 is the population size. This ensures that better (lower distance) solutions have a 

higher chance of selection. 

 

4. Crossover Operators 

For a crossover probability 𝑝𝑐, two parent chromosomes 𝑃1 and 𝑃2 produce offspring 𝑂1 

and 𝑂2 depending on the crossover type: 

• Single-Point Crossover (SPX): 
Choose a random cut point kk: 

𝑂1 = [𝑃1[1:𝑘], 𝑃2[𝑘 + 1: 𝑛]], 𝑂2 = [𝑃2[1: 𝑘], 𝑃1[𝑘 + 1: 𝑛]] 

(With permutation repair to ensure valid assignments.) 

• Two-Point Crossover (TPX): 
Choose two cut points 𝑘1, 𝑘2, and swap the segment between them. 

• Cycle Crossover (CX): 
Preserves the position of elements by mapping cycles between parents. 

• Ordered Crossover (OX): 
Preserves a segment from one parent and fills remaining slots in the order from 
the other. 

 

5. Mutation Operator (Partial Shuffle Mutation, PSM) 

With mutation probability 𝑝𝑚, select a subsequence of the chromosome and shuffle its 

elements randomly: 

𝐶 ′ = shuffle(𝐶[𝑖: 𝑗]) 

This introduces diversity to avoid premature convergence. 

 

6. Stopping Criterion 

The GA stops when: 

𝑔 ≥ 𝑔maxor𝑓best does not improve for 𝑡max generations 

where 𝑔 is the current generation, and 𝑔max} is the maximum allowed generations. 

 

The study began with data initialization, where teachers were randomly assigned to 

schools, with each school receiving six teachers, and this process was repeated at least 

100 times to generate the initial population of 100 chromosomes. Teacher–school 

permutations were used to represent potential solutions. The genetic algorithm was then 

implemented using the Roulette Wheel Selection method, and to ensure reliability, each 

experiment was repeated 10 times. Four distinct experiments were conducted, each 

employing one crossover method—Single Point Crossover (SPX), Two Point Crossover 



 

(TPX), Cycle Crossover (CX), or Order Crossover (OX)—combined with a single mutation 

method, Partial Shuffle Mutation (PSM). For each combination of mutation and crossover 

probabilities, the total distance between all teachers and their assigned schools was 

calculated, with the corresponding average total distance and standard deviation recorded. 

Finally, results analysis involved visualizing the outcomes using bar charts, where each 

method was evaluated based on mean distance and variance, allowing for a direct 

comparison of the performance of different genetic algorithm configurations. 

4. Results and Analysis 

5.1 Convergence Test 

The convergence behavior of the genetic algorithm was analyzed by observing the 

average fitness value across 1,000 iterations. All four crossover methods showed a plateau 

in performance around 900 iterations, which was thus set as the maximum generation for 

further experiments. The convergence speed varied slightly among the crossover types, 

with Ordered Crossover (OX) and Cycle Crossover (CX) reaching near-optimal values 

faster than SPX and TPX, indicating better exploitation capability and stability in the search 

process. Fig. 1 depicts a graph of the convergence test of this study. 

 

 
Fig. 1 Graph of Convergence Test 

 

5.2 Experiment Result 

Table 1 displays the experimental results. It shows the average fitness values of each 

crossover method for various mutation-to-crossover probability ratios (P). 

 

Table 1.  Fitness Value of each crossover method across mutation-to-crossover probability 

ratio 

 

 



 

P SPX TPX CX OX 

1: 20 11856.4 11206.9 10314.9 10046.1 

1: 40 12030.0 11468.2 10477.4 10288.3 

1: 60 12159.1 12033.7 10505.8 10273.6 

1: 80 12209.0 12537.6 10411.1 10497.5 

1:100 12196.8 13041.5 10216.4 10402.7 

Average 12090.2 12057.6 10385.1 10301.6 

SD 136.92 713.41 114.41 177.8 

Coeff. of Var 1.13% 5.92% 1.10% 1.73% 

 

The differences in performance among crossover operators are quite significant and 

illustrate the importance of the correct choice of crossover operators for permutation-based 

problems like teacher placements [22][23][24]. Ordered Crossover (OX) consistently 

produced the lowest average total distance (10,301.6) and, with relatively low variability 

across different probabilities (CV = 1.73%), displayed high stability and robustness of OX 

under varying evolutionary pressures. The OX mechanism, which maintains relative order 

while producing valid permutations, makes it highly suitable for assignment problems 

where the integrity of the assignment sequence matters. 

Cycle Crossover (CX) also exhibits strong performance (average = 10,385.1), but the 

coefficient of variation is the lowest (CV = 1.10%), suggesting that it is stable across 

different settings of mutation-to-crossover ratios. CX makes certain that each object in 

offspring comes from one of the parents and is never duplicated, making it very appropriate 

for placement problems, like placing teachers, where uniqueness constraints are required; 

however, it lags behind OX because it does not have the same high levels of exploration. 

With a high mutation-to-crossover (CX) ratio, Two-Point Crossover (TPX) performs well at 

first but greatly declines with higher crossover rates (from 11,206.9 at 1:20 to 13,041.5 at 

1:100), indicating to us that it is not able to retain high-quality permutations, under strong 

crossover pressure, with a low index of stability (CV = 5.92%). It probably creates invalid 

or redundant placements by spoiling sequence preservation. 

Single-Point Crossover (SPX) gave rise to much more instability (CV = 1.13%), and 

although not a very successful operator, it at least turned out to be the worst, with an 

average total distance of 12,090.2. Though SPX is rather straightforward and quick to 

implement, it is inefficient in generating placements since it is not able to retain the integrity 

of the permutation. It does not sufficiently explore the solution search space for complex 

allocation problems and has a tendency toward premature convergence on suboptimal 

solutions. These findings empirically reinforce that permutation-preserving crossover 

methods (CX and OX) are outrightly superior in terms of both solution quality and stability 

for the teacher placement problem over the traditional segment-swapping methods (SPX 

and TPX). 

The statistical validation applied both parametric and non-parametric analyses to 

evaluate the performance differences among crossover methods in the Teacher Placement 

Problem. The ANOVA test yielded an 𝐹-statistic of 𝐹 = 3.159, which is below the critical 

value of 3.24 at 𝑝 = 0.05, indicating no statistically significant difference under strict 

parametric assumptions. This lack of significance may stem from the relatively high 

variance in the Two-Point Crossover (TPX) results. To address potential deviations from 



 

normality and homogeneity of variance, the Kruskal–Wallis test was employed as a non-

parametric alternative, producing 𝐻 = 14.51 with 𝑝 < 0.05, thus revealing statistically 

significant differences among the crossover methods. Post-hoc Dunn’s test further 

indicated that SPX and TPX are statistically indistinguishable, OX and CX are statistically 

indistinguishable, and all other pairwise comparisons differ significantly. These results 

affirm that OX and CX deliver statistically superior performance compared to SPX and TPX, 

particularly in permutation-based optimization contexts where maintaining solution diversity 

and preserving relative order are essential for effective search. 

The findings of this study indicate that Ordered Crossover (OX) is the most suitable 

crossover operator for automated teacher placement systems, owing to its consistent 

performance across various parameter settings, superior preservation of permutation 

integrity, and ability to generate high-quality solutions with low variance. These strengths 

make OX particularly advantageous in scenarios where the optimization problem requires 

maintaining the original order of elements, thereby reducing disruption to solution structure. 

Such characteristics are highly beneficial for educational authorities and system designers 

aiming to implement intelligent decision support systems for personnel allocation, 

especially in large-scale and complex educational environments where optimal teacher-

school assignments must balance efficiency, fairness, and stability. 

 

5.3 Accuracy Comparison  

This study conducted an accuracy-based evaluation to assess the effectiveness and 
reliability of four crossover operators, including Single-Point (SPX), Two-Point (TPX), Cycle 
(CX), and Ordered (OX), in solving the teacher placement problem. Accuracy was defined 
as the ability of a genetic algorithm to generate low-cost (short total distance) and 
repeatable (low variance) solutions that closely approximate the optimum. Using average 
fitness value as a proxy for solution quality and standard deviation as a measure of 
consistency, the analysis revealed clear performance differences among the methods, with 
OX and CX emerging as the most effective. 

Ordered Crossover (OX) demonstrated the highest accuracy, achieving the lowest 
average fitness value (10,301.63) and maintaining a fair standard deviation (177.8) with a 
low coefficient of variation (1.73%). This combination indicated both strong solution quality 
and repeatability, attributable to OX’s ability to preserve relative order and maintain valid 
permutations as a key requirement in permutation-based optimization problems. Cycle 
Crossover (CX) followed closely, producing a slightly higher average fitness value 
(10,385.11) but the lowest standard deviation (114.41) and coefficient of variation (1.10%), 
reflecting excellent consistency. While marginally less optimal than OX in terms of solution 
quality, CX still ranked as a top contender due to its robustness and ability to generate 
near-optimal results. 

By contrast, Two-Point Crossover (TPX) and Single-Point Crossover (SPX) lag. TPX 
recorded a significantly higher average fitness value (12,057.60) with greater variability (CV 
= 5.92%), indicating both lower solution quality and poor consistency. SPX, although more 
stable (CV = 1.13%), produced the highest average fitness value (12,090.25), making it the 
least effective in achieving optimization goals. When normalized against OX, the relative 
effectiveness was 100% for OX, 99.2% for CX, 85.9% for TPX, and 85.2% for SPX. These 
results affirm that OX and CX outperform SPX and TPX not only in quality but also in 
consistency, a critical factor for real-world teacher placement systems where large-scale, 
stable, and optimal decisions are essential [22][26][27]. 

 
 
 
 



 

5. Conclusion 

The experimental results confirmed that permutation-preserving crossover operators, 
specifically Ordered Crossover (OX) and Cycle Crossover (CX), significantly outperform 
traditional segment-swapping methods such as Single-Point (SPX) and Two-Point (TPX) 
in solving the Teacher Placement Problem (TPP). The convergence analysis demonstrated 
that OX and CX achieved near-optimal solutions more rapidly and with greater stability, 
indicating superior exploitation capabilities within the genetic algorithm framework. OX 
consistently delivered the lowest average fitness values with minimal variability, 
highlighting its robustness in preserving sequence integrity. CX, while slightly less optimal 
in terms of fitness, exhibited the lowest coefficient of variation, underscoring its stability 
across varying evolutionary pressures. 

The statistical validation reinforced these observations, with non-parametric analysis 
confirming that OX and CX produced significantly better results than SPX and TPX. OX’s 
ability to maintain relative order while generating valid permutations allowed it to minimize 
total assignment distance effectively, a crucial factor in optimizing teacher-school 
allocations. CX also maintained high-quality results due to its mechanism of preserving 
unique gene cycles, which is essential for maintaining feasibility in allocation problems. In 
contrast, TPX suffered from pronounced variability and sensitivity to crossover pressure, 
while SPX, though stable, consistently produced suboptimal results due to its inability to 
retain permutation integrity and explore the search space effectively. 

Future research should focus on hybridizing OX and CX with adaptive parameter tuning 
mechanisms to further enhance convergence speed and solution quality. Integrating 
heuristic-based local search strategies could potentially exploit their stability while 
improving exploration in the search space. Additionally, the application of these crossover 
operators should be extended to other large-scale, real-world allocation problems beyond 
education, such as healthcare personnel deployment or logistics scheduling, to validate 
their generalizability. Investigating the performance of these operators under multi-
objective optimization frameworks, where fairness and workload balancing are considered 
alongside distance minimization, could provide a more holistic solution for complex 
decision-support systems in public sector planning. 
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