On Independent [1, 2]-sets in Hypercubes

Eko Budi Santoso^{1*}, Reginaldo M. Marcelo², and Mari-Jo P. Ruiz²

Abstract. Given a simple graph G, a subset $S \subseteq V(G)$ is an independent [1, 2]-set if no two vertices in S are adjacent and for every vertex $v \in V(G) \setminus S$, $1 \leq |N(v) \cap S| \leq 2$, that is, every vertex $v \in V(G) \setminus S$ is adjacent to at least one but not more than two vertices in S. This paper investigates the existence of independent [1, 2]-sets of hypercubes. We show that for some positive integer k, if $n = 2^k - 1$, then hypercubes Q_n and Q_{n+1} have an independent [1, 2]-set. Furthermore, for $1 \leq n \leq 4$, we find bounds for the minimum and maximum cardinality of an independent [1, 2]-set of hypercube Q_n , while for n = 5, 6, we get the maximum of cardinality of an independent [1, 2]-set of hypercube Q_n .

1 Introduction

Let G be a simple graph, that is, it is an undirected graph, has no loop, and has no multiple edges. The *open neighborhood* of a vertex $v \in V(G)$ is the set $N(v) = \{u|uv \in E(G)\}$ of vertices adjacent to v. Each vertex in $u \in N(v)$ is called a *neighbor* of v and the degree of v is d(v) = |N(v)|. For a set S and a vertex v, we denote the number of neighbors of v in S as $d_S(v)$, that is, $d_S(v) = |N(v)| \cap S|$. A set S is *independent* if no two vertices in S are adjacent and *dominating* if every vertex not in S is adjacent to some vertices in S.

Chellali et al., in [1], define a subset $S \subseteq V(G)$ to be a [j,k]-set if for every vertex $v \in V(G) \setminus S$, $j \leq dS(v) \leq k$, that is, every vertex in $V(G) \setminus S$ is adjacent to at least j vertices, but not more than k vertices in S. For j = 1, a [1,k]-set S is a dominating set, since every vertex in $V(G) \setminus S$ has at least one neighbor in S (is dominated by S). The major focus in this study is finding bounds on the minimum cardinality of a [1,2]-set [1]-[4].

In [5], Chellali et al. continue the study of [j,k]-sets and add the requirement that the sets be independent. A dominating set S is an independent [1,k]-set of G if S is independent and $1 \le d_S(v) \le k$ for all $v \in V(G) \setminus S$. In this paper, we will exclusively focus on independent [1,2]-set. Given a graph G, we denote by $i_{[1,2]}(G)$ the minimum cardinality of an independent [1,2]-set of G and by $\alpha_{[1,2]}(G)$ the maximum cardinality of an independent [1,2]-set of G. Unfortunately, not every graph has an independent [1,2]-set. Thus, beside finding the lower and upper bounds cardinality of an independent [1,2]-set of a graph, investigating the existence of an independent [1,2]-set for some graphs is another focus in this study [6], [7].

In this work, we investigate the existence of independent [1,2]-sets of hypercube Q_n . Moreover, we find bounds for the minimum and maximum cardinality of an independent

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

¹Department of Mathematics Education, Sanata Dharma University, Indonesia

²Department of Mathematics, Ateneo de Manila University, Philippines

^{*} Corresponding author: ekobudisantoso@usd.ac.id

[1, 2]-set of hypercube Q_n , for n=1,2,3, and 4. For n=5,6, we get bounds for the maximum cardinality of an independent [1, 2]-set of hypercube Q_n .

The *n*-cube or *n*-dimensional hypercube Q_n is defined recursively in terms of the Cartesian product of two graphs as follows [8]:

$$Q_1 = K_2$$
 (a complete graph of order 2)
 $Q_n = K_2 \square Q_{n-1}$

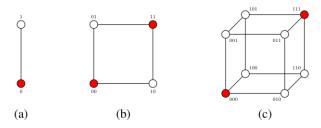


Fig. 1. Hypercubes (a) Q_1 , (b) Q_2 , and (c) Q_3 with an independent [1, 2]-set.

The hypercube of dimension n may also be defined as a graph with vertex set $V(Q_n)$ the set of all binary n-tuples of zeros and ones and set $E(Q_n)$ the set of pairs of vertices $u = u_1 u_2 \dots u_n$ and $v = v_1 v_2 \dots v_n$, where $\sum_{i=1}^n |u_i - v_i| = 1$. In this representation, two vertices of Q_n are adjacent if and only if their binary n-tuples differ in exactly one place. Fig. 1 illustrates hypercubes Q_1, Q_2 , and Q_3 .

Observation 1 The sets $S_1 = \{0\}$ and $S_2 = \{00,11\}$ are independent [1,2]-sets of Q_1 and Q_2 , respectively. Furthermore, $i_{[1,2]}(Q_1) = \alpha_{[1,2]}(Q_1) = 1$, $i_{[1,2]}(Q_2) = \alpha_{[1,2]}(Q_2) = 2$, and S_1 is an efficient dominating set of Q_1 .

Observation 2 The set $S_3 = \{000,111\}$ is an independent [1,2]-set of Q_3 . No singleton subset of $V(Q_3)$ can be a dominating set and any independent set of cardinality three is not a [1,2]-set; hence $i_{[1,2]}(Q_3) = \alpha_{[1,2]}(Q_3) = 2$. Furthermore, S_3 is an efficient dominating set of Q_3 . The independent [1,2]-set S_3 is not unique.

In Observations 1 and 2 we noted that hypercubes Q_1 and Q_3 have efficient dominating sets. The study of the existence of efficient dominating sets in Q_n has been done in the context of single error-correcting codes [9].

Theorem 1 (Livingston [10]). An n-dimensional hypercube Q_n has an efficient dominating set if and only if $n = 2^k - 1$, for some positive integer k.

2 Main Result

In the following discussion, we show that hypercubes Q_n , for n=4,5, and 6, have an independent [1, 2]-set.

Proposition 1. Q_4 has an independent [1,2]-set. Furthermore, $i_{[1,2]}(Q_4) = \alpha_{[1,2]}(Q_4) = 4$.

Proof. We prove the proposition by construction. We will construct an independent [1, 2]-set S_4 using S_3 in Observation 2.

Since by definition, $Q_4 = K_2 \square Q_3$, as illustrated in **Fig. 2**, we may consider Q_4 as formed from two copies of Q_3 , say A and B, respectively. We label the vertices of Q_4 using vertex

labeling of Q_3 with prefix 0 added in the vertices in A, and 1 for the vertices in B. Thus if $v_1v_2v_3 \in V(Q_3)$, then its corresponding vertices in Q_4 will be $0v_1v_2v_3$ and $1v_1v_2v_3$.

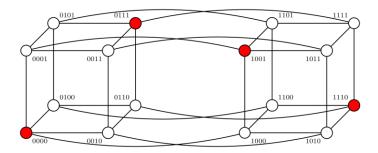


Fig. 2. The hypercubes Q_4 with an independent [1, 2]-set.

We form S_4 by taking a copy of S_3 in A, and another copy in B. For example, $S_4 = \{0000,0111,1001,1110\}$. It follows that $i_{[1,2]}(Q_4) = 4$ since a vertex subset with at most 3 elements can only dominate 12 vertices at most, while $|V(Q_4)| = 16$. Finally, $\alpha_{[1,2]}(Q_4) = 4$ since an independent [1,2]-set with 5 elements will have at least 3 elements in A or B, contradicting $\alpha_{[1,2]}(Q_3) = 2$.

We note that the independent [1,2]-set of Q_4 is not unique. Fig. 3 shows another independent [1,2]-set of Q_4 . The advantage of the construction in the proof of Proposition 1 is that we use the independent [1,2]-set of Q_3 to construct an independent [1,2]-set of Q_4 . Using a similar technique, we construct an independent [1,2]-set of Q_5 and Q_6 . Also, we observe in Fig. 2, that S_4 is not an independent [1,1]-set. Furthermore, some vertices in Q_4 , namely vertices 0001,0110,1000,1111, are adjacent to two elements of S_4 . We need to consider such vertices in the construction of S_5 .

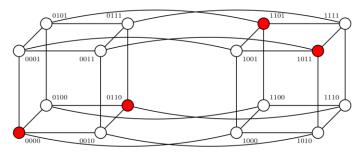


Fig. 3. Another independent [1, 2]-set for Q_4 .

Proposition 2. Q_5 has an independent [1, 2]-set and $\alpha_{\lceil 1,2\rceil}(Q_5)=8$.

Proof. We prove the proposition by construction. We will construct an independent [1, 2]-set S_5 using S_4 in Proposition 1. We consider Q_5 as formed from two copies of Q_4 , say A and B, respectively. We label the vertices of Q_5 using vertex labeling of Q_4 with prefix 0 added in the vertices in A, and 1 for the vertices in B.

As illustrated in Fig. 4, we form S_5 by taking a copy of S_4 in Proposition 1 for A. We consider another independent [1,2]-set in B such that the union with S_4 is an independent of Q_5 . For example, $S_5 = \{00000,00111,01001,01110,11001,11001,11100,11011\}$. It

follows that $\alpha_{[1,2]}(Q_5) = 8$ since an independent [1, 2]-set with 9 elements will have at least 5 elements in A or B, contradicting $\alpha_{[1,2]}(Q_4) = 4$.

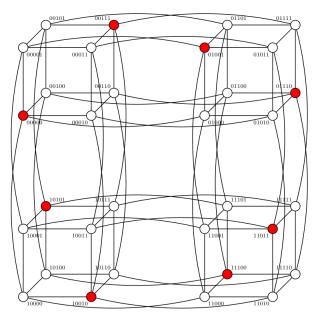


Fig. 4. The hypercube Q_5 with an independent [1, 2]-set.

Proposition 3. Q_6 has an independent [1, 2]-set and $\alpha_{[1,2]}(Q_6) = 16$.

Proof. Using similar technique as in Propositions 1 and 2, we construct an independent [1, 2]-set S_6 using S_5 . We consider Q_6 as formed from two copies of Q_5 , say A and B, respectively. We use S_5 in Proposition 2 as an independent [1,2]-set for A. As illustrated in Fig. 5, we construct an independent [1,2]-set for B such that the union with S_5 is an independent [1,2]-set of Q_6 .

 $S_6 = \{000000,000111,001001,001110,010010,011100,011101, 100100,100011,101101, 100100,100011,101101, 101010,110001,110110,111000,1111111\}$ is an independent [1,2]-set of Q_6 . It follows that $\alpha_{[1,2]}(Q_6) = 16$ since an independent [1,2]-set with 17 elements will have at least 9 elements in A or B, contradicting $\alpha_{[1,2]}(Q_5) = 8$. \square

Theorem 2 If $n = 2^k - 1$, for some positive integer k, then Q_n and Q_{n+1} have an independent [1, 2]-set.

Proof. By proposition 1, Q_n with $n=2^k-1$ has an efficient dominating set, that is, an independent [1, 1]-set, say S_n . Then S_n is also an independent [1, 2]-set. If $A=\{a_1a_2a_3\dots a_na_{n+1}\in V(Q_{n+1})|a_1=0\}$, then $T=\{0s_1s_2s_3\dots s_n\ |s_1s_2s_3\dots s_n\in S_n\}$ is an independent [1, 1]-set of $Q_{n+1}[A]$. We observe that

 $W = \{u_1u_2u_3 \dots u_n \in V(Q_n) | u_k = s_k, 1 \le k \le n-1, \text{ and } |u_n - s_n| = 1, \text{ for all } s_1s_2s_3 \dots s_n \in S_n\}$

is also an independent [1, 1]-set of Q_n . Let $B = \{b_1 b_2 b_3 \dots b_n b_{n+1} \in V(Qn+1) \mid b1 = 1\}$. Then a set $U = \{1u_1 u_2 u_3 \dots u_n \mid u_1 u_2 u_3 \dots u_n \in W\}$ is an independent [1, 1]-set of $Q_{n+1}[B]$.

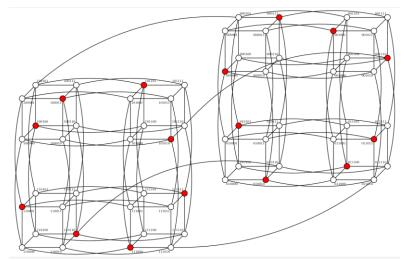


Fig. 5. The hypercube Q_6 with an independent [1, 2]-set. To avoid a confusion, we only represent some edges from vertices $0v_2v_3v_4v_5v_6$ to $1v_2v_3v_4v_5v_6$.

Now we consider $S_{n+1} = T \cup U$. First we note that S_{n+1} is a dominating set of Q_{n+1} since sets T and U are independent [1,1]-sets of $Q_{n+1}[A]$ and $Q_{n+1}[B]$, respectively, where sets A and B are disjoint sets with union $V(Q_{n+1})$. Let $v = v_1 v_2 v_3 \dots v_{n+1}$ and $w = w_1 w_2 w_3 \dots w_{n+1}$ be elements of S_{n+1} . If $v_1 = w_1$ then they are not adjacent since either both of them are elements of T or U.

Suppose $v_1 \neq w_1$. Then one of them is an element of T and the other one is an element of U. We recall the construction of T and U. If $0v_2v_3...v_nv_{n+1}$ is an element of T then vertex $1v_2v_3...v_nk$ with $k=|v_{n+1}-1|$ is an element of U. Conversely if $1w_2w_3...w_nw_{n+1}$ is an element of U, then vertex $0w_2w_3...w_nk$ with $k=|w_{n+1}-1|$ is an element of T. Thus, if $v_1v_2v_3...v_{n+1}$ and $w_1w_2w_3...w_{n+1}$ are elements of S_{n+1} with $v_1 \neq w_1$, then $\sum_{i=1}^{n+1}|v_i-w_i| \geq 2$. Hence they are not adjacent.

We have shown that S_{n+1} is an independent dominating set. We need to show that it is a [1,2]-set. Let $t \in A$ or $t \in B$. In any case, t is adjacent to at most one element in T and at most one element in U. So, t is adjacent to at most two elements of S_{n+1} . By similar argument, if $t_{n+1} = 1$, then t is adjacent to at most two elements of S_{n+1} , and it follows that S_{n+1} is an independent [1,2]-set of Q_{n+1} .

3 Conclusion and Remarks

This paper has shown the existence of an independent [1, 2]-set of hypercube Q_n for $1 \le n \le 6$ and n = 2k, for some positive integer k. For further study, one may investigate the existence of an independent [1, 2]-set of hypercube Q_n for all positive integer n together with the bounds of minimum and maximum cardinality of an independent [1, 2]-set.

References

- M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. McRae, "[1, 2]-sets in graphs," *Discret. Appl. Math.*, vol. 161, no. 18, pp. 2885–2893, (2013). https://doi.org/10.1016/j.dam.2013.06.012
- 2. A. K. Goharshady, M. R. Hooshmandasl, and M. Alambardar Meybodi, "[1,2]-sets

- and [1,2]-total sets in Tress with Algorithms," *Discret. Appl. Math.*, vol. **198**, pp. 136–146 (2016). https://doi.org/10.1016/j.dam.2015.06.014
- 3. X. Yang and B. Wu, "[1,2]-domination in Graphs," *Discret. Appl. Math.*, vol. **175**, pp. 79–86 (2014). https://doi.org/10.1016/j.dam.2014.05.035
- C. Zhao and C. Zhang, "[1,2]-Domination in Generalized Petersen Graphs," *Appl. Math. Sci.*, vol. 9, pp. 3187–3191 (2015) https://doi.org/10.12988/ams.2015.52163
- 5. M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. Mcrae, "Independent [1 ,k] sets in Graph," *Australas. J. Comb.*, vol. **59**, no. 1, pp. 144–156 (2014) [Online]. Available: https://ajc.maths.uq.edu.au/pdf/59/ajc_v59_p144.pdf
- S. A. Aleid, J. Cáceres, and M. Luz Puertas, "On independent [1,2]-sets in trees," Discuss. Math. Graph Theory, vol. 38, no. 3, pp. 645–660 (2018). https://doi.org/10.7151/dmgt.2029
- S. A. Aleid, J. Cáceres, and M. L. Puertas, "Every grid has an independent [1, 2]-set," *Discret. Appl. Math.*, vol. 263, pp. 14–21 (2019). https://doi.org/10.1016/j.dam.2018.05.020
- 8. F. Harary, J. P. Hayes, and H.-J. Wu, "A survey of the theory of hypercube graphs," *Comput. Math. with Appl.*, vol. **15**, no. 4, pp. 277–289 (1988). https://doi.org/10.1016/0898-1221(88)90213-1
- 9. N. Biggs, "Perfect codes in graphs," *J. Comb. Theory, Ser. B*, vol. **15**, no. 3, pp. 289–296 (1973). https://doi.org/10.1016/0095-8956(73)90042-7
- M. Livingston and Q. F. Stout, "Perfect Dominating Sets," *Congr. Numer.*, vol. 79, pp. 187–203, 1990, [Online]. Available: https://www.researchgate.net/publication/2671334