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Abstract. This paper highlights the challenges associated with unbalanced 
data by examining how balanced data affects Artificial Neural Network 
(ANN) classification on Rodent Tuber’s Liquid Chromatography Mass 
Spectrometry data. Chemical disparity in the dataset drives a reexamination 
of traditional algorithms and their preference for balanced data. We present 
ANN as an alternative, discussing its benefits, such as fault tolerance and 
flexible computation. The study assesses ANN performance using balancing 
data strategies: Synthetic Minority Over-sampling Technique (SMOTE), 
Adaptive Synthetic Sampling (ADASYN), Random Under-Sampling (RUS), 
and NearMiss. ADASYN achieved the best outcome and ANN still cannot 
provide optimal results with balanced data. So, additional studies and 
continuous improvements are needed. 

Keywords: Rodent Tuber, balanced and imbalanced data, balancing 
algorithms, Artifical Neural Networks. 

1 Introduction  

Rodent Tuber (Typhonium flagelliforme Lodd.) is a native plant in Indonesia 
known for its detoxification and anticancer properties used in traditional medicine 
for years[1].  Liquid Chromatography Mass Spectrometry data from Rodent Tuber 
plants, previously researched by Sianipar et al  [2]−[7], was used in research 
conducted by Binanto et al [8]. The disparity between the anti-cancer and common 
chemicals shown in binary targets throws this data out of balance. This is due to the 
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specific properties unique to a few chemicals contained in Rodent Tuber that have 
the ability to prevent cancer cell growth or destroy cancer cells.  

The use of unbalanced data in classification using machine learning can produce 
inaccurate results. Other research on this topic has predominantly used Random 
Forest, Gaussian Naïve Bayes, and K-Nearest Neighbor algorithms, all focusing on 
balanced data [9]−[12]. 

This emphasis on balanced data in the existing literature prompts a reevaluation 
of methodology. Therefore, this study aims to introduce Artificial Neural Networks 
(ANN) as an alternative approach. In contrast to other traditional algorithms, ANN 
are widely utilized as classification models for binary outcomes in medicine. Neural 
networks have several advantages, including the ability to store information thro-
ughout the network, work with incomplete knowledge, and fault tolerance. They 
also have distributed memory and parallel processing capabilities [13]. 

This study explores class imbalance in Rodent Tuber dataset using Artificial 
Neural Networks (ANN) and balancing strategies, highlighting the benefits and 
challenges of using ANN with unbalanced data. 

2  Literature Review  

Previous studies on this topic have only used conventional algorithms, including 
Random Forest, Gaussian Naïve Bayes, and K-Nearest Neighbor, focusing on 
balanced data using various balancing techniques [9]–[12]. From previous research, 
the KNN, Gaussian Naïve Bayes, and Random Forest algorithms on real data 
(unbalanced data)  produced accuracy values of 0.984, 0.985, and 1, respectively. 
On balanced data using borderline SMOTE, the accuracy was 0.967, 0.499, and 
0.984, respectively [12]. 

In response to the limitations posed by traditional algorithms and the emphasis 
on balanced data, this study proposes the integration of Artificial Neural Networks 
(ANN) as an alternative approach. New systems and computational techniques for 
machine learning, knowledge demonstration, and ultimately the application of in-
formation learned to maximize the output responses of complex systems are known 
as artificial neural networks (ANN) [14]. ANN is based on how nervous systems, 
such as the brain, manage and process information. On a much smaller scale, they 
are concentrated on the neuronal architecture of the cerebral cortex. Many experts 
in artificial intelligence regard ANN as the greatest, if not the only, option for cre-
ating intelligent machines [15]. 

ANN have several key features. ANN offer flexible computation, similar to 
biological neural networks, and can handle incomplete knowledge. They are fault-
tolerant and have distributed memory, requiring examples for learning [13], [16]. 
However, their success depends on the quality of examples provided, as incorrect 
outputs may occur if certain aspects are not shown. There are many studies on ANN, 
including the use of ANN for cervical cancer classification [17], the comparison of 
ANN with CNN [18], and decision-making of health care organization using ANN 
[19]. 
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The accuracy of many classifications is severely affected by imbalanced datasets 
in machine learning approaches. The actual time environment is comparatively 
more prone to inconsistencies like imbalance and data with noise [20]. Despite their 
effectiveness, traditional methods like Random Forest, Gaussian Naïve Bayes, and 
K-Nearest Neighbor have limitations in handling imbalanced data. Recent advan-
cements, such as Generative Adversarial Networks (GANs), have shown promise 
in addressing class imbalance but have not been thoroughly explored in this context. 

3  Research Method  

The dataset of Rodent Tuber [2]–[7] will be used in this work and preprocessed 
ready, which will result in an initially unbalanced dataset as shown in Fig 1 and Fig 
2.  

 
Fig. 1. Unbalanced Dataset Graph 

 

 
Fig. 2. Unbalanced Preprocessed Dataset [8] 

 
The dataset will be transformed into multiple balanced representation by 
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applying Synthetic Minority Over-sampling Technique (SMOTE), Adaptive 
Synthetic Sampling (ADASYN), Random Under-Sampling (RUS), and Near Miss 
Under-sampling (NearMiss) to solve the class imbalance. The type of data 
distribution (balanced or imbalanced) and its effect on the effectiveness of artificial 
neural networks (ANN) for predicting are the two main factors that drive our 
research. On both imbalanced and balanced datasets, in-depth model validation and 
training involving several neural network designs were carried out. A thorough 
analysis was conducted using confusion matrices and performance indicators such 
as accuracy, precision, recall, and F1 score.  
 

 
 

Fig. 3. Research Method 
 

Fig. 3 shows the research method that shows the workflow. These images pro-
vide a visual overview of the experimental setup with default parameters, assisting 
in a thorough understanding of the study's methodology. 

4  Results and Discussions  

Before balancing, the dataset is split into two datasets: the training dataset and 
the testing dataset. The training dataset is then balanced, while the testing dataset 
will be used to test the created ANN model. 

The results of balancing of Rodent Tuber’s dataset using SMOTE, ADASYN, 
Random Under Sampling (RUS), and Near Miss are shown in Fig. 4 - 7. It can be 
seen that the number of data points changes when balanced. This is related to the 
way the balancing algorithms work. 



5 

 

 
Fig. 4. Balanced Dataset with SMOTE 

 
 

 
Fig. 5. Balanced Dataset with ADASYN 

 

 
Fig. 6. Balanced Dataset with Random Under Sampling 
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Fig. 7. Balanced Dataset with Near Miss 

 
For the ANN model trained using the original imbalanced dataset, the accuracy 

is 99%. While the accuracy is very high compared to the rest, the confusion matrix 
in Fig. 8 shows the flaw of the model. It predicted everything as Positive and none 
as Negative, resulting a staggering amount of True Positive, and False Positive. As 
stated before, the success of ANN depends on the quality of data that is feed into 
the model. With the dataset being highly imbalanced, the model treats the data with 
the class of 1 as noise, and predicted it as class 0.  

 

 
Fig. 8. Confusion Matrix of Rodent Tuber’s Imbalanced Data 

 
For ANN model trained using balanced dataset with SMOTE, the accuracy is 

56%. While not as high as the imbalanced dataset, the confusion matrix in Fig. 9 
shows that the model predicted was able to predict the True Negative. But, the 
model struggles to differentiate between True Positive and True Negative. Meaning 
that a lot of normal compound is predicted as the anti-cancer compound. 

For ANN model trained using dataset balanced with ADASYN, it resulted in an 
accuracy of 65%. The model did a better job than with SMOTE, but still struggles 
to differentiate between True Positive and True Negative. The similarity in results 
between SMOTE and ADASYN raises intriguing questions about the underlying 
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dynamics of oversampling techniques in the context of our dataset. One potential 
explanation is that, despite their distinct mechanisms, both SMOTE and ADASYN 
introduce synthetic instances to the minority class, influencing the model in similar 
ways. This shared characteristic might contribute to the observed difficulty in accu-
rately discriminating between positive and negative instances.  

  

 
Fig. 9. Confusion Matrix of Rodent Tuber’s Balance Data with SMOTE 

 

 
Fig. 10. Confusion Matrix of Rodent Tuber’s Balance Data with ADASYN 

 
For ANN model trained using dataset balanced with Random Undersampling 

(RUS), the accuracy is 37%. The model did a worse job than with SMOTE and 
ADASYN. The confusion matrix in Fig. 11 shows that It is the opposite of both 
SMOTE and ADASYN, meaning, it predicted more False Negative than True Po-
sitive. 

For ANN model trained using dataset balanced with Near Miss, the accuracy is 
62%. The model did a fairly decent job, but still worse than the model using 
ADASYN. The confusion matrix in Fig. 12 also shows that it also struggles diffe-
rentiating True Positive and True Negative, similar to both of the model using 
ADASYN and SMOTE. The inferior performance of the undersampling methods 
compared to their oversampling counterparts may stem from the inherent reduction 
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in the dataset's size. By discarding instances from the majority class during under-
sampling, crucial information might be lost, hindering the model's ability to discern 
subtle patterns within the data.  

 

 
Fig. 11. Confusion Matrix of Rodent Tuber’s Balance Data with Random Under Sampling 

 

 
Fig. 12. Confusion Matrix of Rodent Tuber’s Balance Data with Near Miss 

 
Table 1 shows the evaluation metrics for all of the models trained using 

imbalanced and balanced data using various balancing algorithms. We used default 
parameters on each balancing algorithms and ANN.  

In the imbalanced dataset, it appears that the accuracy is 99%, but upon closer 
inspection, it turns out to be only for class 0. Class 1 has a value of 0 across the 
board. This indicates overfitting. The issues encountered by the ANN models in 
effectively handling the Rodent Tuber dataset are complex, influenced by the inher-
ent bias in artificial neural networks and the synthetic nature of the balancing algo-
rithms used. Bias in ANNs from their ability to capture and learn patterns from 
training data, which frequently leads to a preference for the majority class, which in 
this case consists of normal compounds. In the context of anti-cancer compound 
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prediction, this inherent bias can manifest as a tendency to predict instances as nor-
mal compounds, resulting in a significant number of False Negatives. 

 
 
 

 
Table 1. Each balancing strategies evaluation metric score 

Balancing 
strategies Class 

Evaluation Metric 

Precision Recall F1-
Score Accuracy 

None (Imbalanced) 0 0.99 1.0 0.99 0.99 1 0.00 0.00 0.00 

SMOTE 0 1.00 0.55 0.71 0.56 1 0.03 0.96 0.06 

ADASYN 0 1.00 0.64 0.78 0.65 1 0.03 0.84 0.07 

RUS 0 0.99 0.37 0.54 0.37 1 0.02 0.66 0.03 

NearMiss 0 0.99 0.62 0.77 0.62 1 0.03 0.78 0.06 
 
 Moreover, the synthetic nature of balancing algorithms, such as SMOTE and 

ADASYN, adds additional layers of complexity. While these algorithms are de-
signed to address class imbalance by generating synthetic instances for the minority 
class, their effectiveness can be hindered by the intricacies of the dataset. The syn-
thetic instances created may not perfectly encapsulate the subtle patterns and char-
acteristics of genuine anti-cancer compounds, posing difficulties in accurate classi-
fication. As a result, ANN models trained on datasets balanced with these 
techniques may struggle to generalize effectively to unseen data, especially given 
the nuanced nature of the anti-cancer compound prediction task.  

Furthermore, the challenges posed by bias and the synthetic nature of balancing 
algorithms underscore the need for a meticulous examination of model predictions. 
The observed struggles in differentiating between True Positive and True Negative 
instances emphasize the complexities associated with discerning between normal 
and anti-cancer compounds.  

ADASYN achieved high true positives but higher false negatives, while produ-
cing the second best true negative after SMOTE. Random sampling was the least 
effective, trailing behind NearMiss. 

Balancing algorithms like SMOTE and ADASYN, designed to address class 
imbalance, can be complicated due to the intricacies of the dataset. These synthetic 
instances may not accurately represent genuine anti-cancer compounds, making it 
difficult for ANN models to generalize effectively. 

In our exploration of data balance effects on Neural Network predictions for 
Rodent Tuber, the challenges posed by an imbalanced dataset were evident. Despite 
employing SMOTE, RUS, ADASYN, and NearMiss, F1 scores revealed perfor-
mance ranging from 0.03 to 0.78. Notably, ADASYN demonstrated an impressive 
ability for true positives at the expense of increased false negatives, while producing 
the second best true negative after SMOTE. ADASYN, while generating more true 
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positives and fewer false negatives than SMOTE, exhibited a trade-off with higher 
false positives. Random sampling emerged as the least effective, with NearMiss 
trailing behind ADASYN in performance.  

The synthetic nature of balancing techniques, combined with ANN biases, 
emerged as critical factors in shaping the predictive outcomes. This highlights the 
intricate interplay between data balance and the nuanced task of tuber prediction.  

5  Conclusion  

This study shows that data balancing and the use of ANN in the classification of 
Rodent Tuber have not produced good results yet. Although it is shown that 
balancing data using ADASYN has better results when used by ANN. Therefore, 
continuous studies are needed in the selection of parameters and model architecture 
for optimal pharmacognosy classification. Also, contribute to the discussion of op-
timizing Neural Network predictions in pharmacognosy contexts, laying the 
groundwork for future research in imbalanced data scenarios.  
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