

MPI (Media Pharmaceutica Indonesiana)

Current Archives Announcements About

[Home](#) / [Archives](#) / Vol. 7 No. 2 (2025): DECEMBER

Vol. 7 No. 2 (2025): DECEMBER

This issue (MPI, Media Pharmaceutica Indonesiana Volume 7 No 2 Year 2025) has been finalized and available online for the regular issue of 31st December 2025 with the DOI 10.24123/mpi.v7i2.

All articles in this issue (17 original research articles) include 65 Authors from 1 country/region of origin (Indonesia) and 10 provinces (East Java, Central Java, West Java, Special Region of Yogyakarta, Special Capital Region of Jakarta, West Sumatra, South Sulawesi, Southeast Sulawesi, South Kalimantan, North Kalimantan).

DOI: <https://doi.org/10.24123/mpi.v7i2>

Published: 2025-12-31

— Original Research Articles —

[Virtual Screening, ADMET Evaluation, and Molecular Docking Approach in the Discovery of Novel Potential Sweetening Agent](#)

Tezar Achsendo Yuniarta, Dini Kesuma, Purnawan Pontana Putra

124-137

Abstract Views: 0 PDF Downloads: 0 DOI <https://doi.org/10.24123/mpi.v7i2.7437>

[Supplementary](#)

[Evaluasi Penggunaan Antibiotik Profilaksis Klasifikasi Access pada Pasien Bedah Obstetri-Ginekologi \(Obgyn\)](#)

Siti Zumaroh, Fauna Herawati, Rika Yulia

138-147

Abstract Views: 0 PDF Downloads: 0 DOI <https://doi.org/10.24123/mpi.v7i2.7301>

[PDF](#)

[Thin Layer Chromatography \(TLC\) Fingerprint Analysis of Moringa oleifera Leaves Extract](#)

Nikmatul Ikhrom Eka Jayani, I Gusti Ngurah Sutan Jaya, Merliana Putri Pratiwi Martins, Karina Citra Rani 148-157

Abstract Views: 0 PDF Downloads: 0 DOI <https://doi.org/10.24123/mpi.v7i2.7441>

[PDF](#)

Design of Casocidin-II Mutation Variants as Antibacterial Candidates against *Helicobacter pylori* using Bioinformatic Approaches

Yulianto Ade Prasetya, Tjie Kok

169-181

The Association of Respondent Characteristics with Hyperglycemia among Obesity at the Outpatient Clinic

Martanty Aditya, Dhanang Prawira Nugraha, Hestyana Zita, Michael Resta Surya Yanuar, Muhammad Hilmi Afthoni

182-191

Molecular Docking Analysis of Compounds in *Coleus blumei* Leaves as Potential Antibiotics Against Methicillin-Resistant *Staphylococcus aureus*

Eka Sukmawaty, Sabilla Suryaning Amanda, Hafsan, Fatmawati Nur, Afryanti Pratiwi

192-203

Effect of Sappanwood Extract (*Biancaea sappan* (L.) Tod.) on the Elimination Phase of the Pharmacokinetic Profile of Glibenclamide in Wistar Rats (*Rattus norvegicus*)

Anak Agung Pradnya Paramitha Vidiani, Margareta Chintami Tapun, Anifatus Sa'adah, Madyo Adrianto

204-211

Antioxidant Polyphenolics Extraction Techniques from Beluntas Leaves using Choline Chloride-Urea: Comparative Study with 70%-Ethanol

Ni Putu Erni Hikmawanti, Agustin Yumita, Halisa Amalia, Siti Rosidah Cahyani, Meira Amalia Putri, Abdul Mun'im

212-224

 PDF

Uji Aktivitas Antibakteri Ekstrak Etil Asetat Daun Tigaron (*Crateva religiosa* G. Forst) terhadap Bakteri *Shigella dysenteriae* dan *Salmonella typhi*

Nur Laili, Ufairah Norazizah, Fitriyanti, Putri Kartika Sari

225-233

Pengaruh Konsentrasi HPMC terhadap Karakterisasi Sediaan Nanoemulgel Ekstrak Daun Jambu Biji Merah (*Psidium guajava* L.)

Nadya Ambarwati, Reviany Vibrianita Nidom, Khodijah Riziq

234-244

Anti-Acne Activity of Robusta Green Coffee Bean Extract against *Cutibacterium acnes*

Cinthiya Ekwinta Putri, Ismi Puspitasari, Mega Novita, Dian Marlina

245-252

Pengaruh Poloxamer 188 dan Propilen Glikol terhadap Karakteristik Fisik, Stabilitas, dan Inhibisi Tyrosinase pada NLC Bakuchiol

Ria Hanistyta, Annisa Kartika Sari, Umrotus Solikah

253-262

The Effects of Varying Saffron Extract Concentration on the Physical Quality, Stability and Antioxidant Activity Tests of Gel Dosage Form

Nadia Pramasari, Fenita Shoviantari, Yuliana Rumwarin, Ninis Yuliaty, Ade Giriyati Anjani, Asih Imulda Hesturini, Sugiyartono

263-272

 PDF

Pengetahuan dan Sikap Ibu Hamil terhadap Swamedikasi: Analisis Faktor Demografi dan Riwayat Penyakit Kronis

Chynthia Pradiftha Sari, Suci Hanifah, Nesya Abeliza Sasnada

Optimasi Kombinasi Polimer Hidroksi Propil Metil Selulosa K4M dan Natrium Karboksimetil Selulosa pada Formula Patch Ekstrak Daun Alpukat (Persea americana Mill.) dengan Metode Simplex Lattice Design

Cintana Violena Alifia Putri, Citra Ariani Edityaningrum

283-299

 Abstract Views: 0 PDF Downloads: 0 DOI <https://doi.org/10.24123/mpi.v7i2.8002>

 PDF

Authentication of *Drimys piperita* Hook f. Tree Bark Infusion from the Adulteration of *Cinnamomum burmannii* Nees Ex Bl. using the Combination of UV Spectroscopy and Chemometrics Techniques

Vivian Yulias Sabela, Chesie Laurendy, Dicky Prarathana, Florentinus Dika Octa Riswanto

300-309

 Abstract Views: 0 PDF Downloads: 0 DOI <https://doi.org/10.24123/mpi.v7i2.7964>

 PDF

» Additional Menu

 [SUBMISSION TUTORIAL](#)

 [LOGIN TROUBLESHOOT TUTORIAL](#)

 [E-BROCHURE](#)

 [AUTHOR GUIDELINES](#)

 [ONLINE SUBMISSION](#)

 [STATEMENT OF ORIGINALITY](#)

 [COPYRIGHT TRANSFER FORM](#)

 [PUBLICATION ETHICS](#)

 [SCREENING OF PLAGIARISM](#)

 [EDITORIAL BOARD](#)

 [REVIEWERS](#)

 [VISITOR STATISTICS](#)

 [INDEXING & ABSTRACTING](#)

 [ARTICLE PROCESSING CHARGES](#)

 [PEER REVIEW POLICY](#)

 [GENERATIVE AI POLICY](#)

Most read last week

[Anatomi Jaringan, Identifikasi Mikroskopis, serta Kadar Polifenol Ekstrak Etanol Daun dari Tiga Jenis Jambu Genus *Syzygium*](#)

85

[Studi Farmakokinetika Teofilina Setelah Pemberian Oral Dosis Tunggal Tablet Teofilina dan Aminofilina Lepas Kendali pada Subjek Normal](#)

49

[Aktivitas Inhibisi Enzim Alfa-glukosidase dari Ekstrak Rimpang Bangle \(*Zingiber cassumunar Roxb.*\) secara In vitro](#)

36

[Metode Monocyte Activation Test \(MAT\) dan Recombinant Factor C \(rFC\) sebagai Alternatif Metode Pengujian Pirogen bagi Perusahaan Farmasi di Indonesia](#)

34

[Kajian Pustaka: Sediaan Kosmesetika Penumbuh Rambut dari Berbagai Herbal Nusantara](#)

33

Certificate

Journal Template

Tools

grammarly

Counter :

Information

[For Readers](#)

[For Authors](#)

[For Librarians](#)

Keywords

Current Issue

[ATOM 1.0](#)

[RSS 2.0](#)

[RSS 1.0](#)

Further Information:

Faculty Of Pharmacy
Jl. Raya Kalirungkut - Surabaya, Jawa Timur, Indonesia
Phone: +62 31 298 1165| Fax: +62 31 298 1111
Email: mpi@unit.ubaya.ac.id

[View My Stat](#)

MPI (Media Pharmaceutica Indonesiana)

Current Archives Announcements About

[Home](#) / Editorial Team

Editorial Team

Editor in Chief

Aditya Trias Pradana (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Section Editor

Eko Setiawan (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Tegar Achsendo Yuniarta (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Karina Citra Rani (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Nina Dewi Oktaviyanti (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Associate Editor

Herman J. Woerdenbag (University of Groningen, Netherlands) [Scopus](#)

Assoc. Prof. Dr. Omboon Vallisuta (Mahidol University, Thailand) [Scopus](#)

Menino Osbert Cotta (The University of Queensland, Australia) [Scopus](#)

Prof. Christina Avanti (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Prof. Dwi Setyawan (Universitas Airlangga, Indonesia) [Gscholar](#) [Scopus](#)

Rika Yulia (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Oke Yunita (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Prof. Retno Widywati (Universitas Airlangga, Indonesia) [Gscholar](#) [Scopus](#)

Desak Ketut Ernawati (Universitas Udayana, Indonesia) [Gscholar](#) [Scopus](#)

Prof. Susi Ari Kristina (Universitas Gadjah Mada, Indonesia) [Gscholar](#) [Scopus](#)

Prof. Dini Kesuma (Universitas Surabaya, Indonesia) [Gscholar](#) [Scopus](#)

Hendri Wasito (Universitas Jenderal Soedirman, Indonesia) [Gscholar](#) [Scopus](#)

Prof. I Ketut Adnyana (Institut Teknologi Bandung, Indonesia) [Gscholar](#) [Scopus](#)

Administrator

Siti Kusnul Khotimah

Maya Harfia A

» Additional Menu

Authentication of *Drimys piperita* Hook f. Tree Bark Infusion from the Adulteration of *Cinnamomum burmannii* Nees Ex Bl. using the Combination of UV Spectroscopy and Chemometrics Techniques

Vivian Yulias Sabela¹, Chesie Laurendy¹, Dicky Prarathana¹, and Florentinus Dika Octa Riswanto^{1,2}

¹Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, 55282, Indonesia

²Research Group of Computer-Aided Drug Design and Discovery of Bioactive Natural Products, Sanata Dharma University, Yogyakarta, 55282, Indonesia

Correspondence: Florentinus Dika Octa Riswanto

Email: dikaocta@usd.ac.id

Submitted: 07-10-2025, Revised: 11-12-2025, Accepted: 12-12-2025, Published regularly: December 2025

ABSTRACT: This study aims to develop a method to authenticate akway bark (*Drimys piperita* Hook f.) infusion using UV spectroscopy and chemometrics techniques. The background initiative of this study is the consideration of the high economic value of akway bark which may potentially lead to the adulteration of the akway raw materials for traditional medicine. The sample used in this study was akway bark obtained from Manokwari, Papua, Indonesia. Samples of akway bark, cinnamon, and a mixture of both were prepared in the form of powder and then infused. The infusion was examined using UV spectroscopy to obtain the absorption value of each wavelength. Chemometrics techniques including principal component analysis (PCA) and multivariate calibration using principal component regression (PCR) and partial least squares (PLS) regression were carried out during the study. Additionally, computational discrimination using sparse partial least squares discriminant analysis (sPLS-DA) was performed afterwards. A total of 36 distinctive wavelengths were obtained. The absorption values were then used to form a PCA model. The best multivariate calibration model was derived from PCR data processing on the original spectra for both akway and cinnamon bark infusion samples. The AUC-ROC values obtained from the application of the sPLS-DA technique for each sample were 1.000, 0.956, and 0.633 for akway bark, cinnamon, and the mixture of both, respectively. Authentication of akway bark infusion has been successfully conducted on the presence of cinnamon as the adulterant.

Keywords: akway; authentication; chemometrics; Papua

Copyright (c) 2024 The Author(s)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

1. Introduction

Akway (*Drimys piperita* Hook.f) is a plant endemic to Papua, Indonesia, which is a woody, aromatic-leaved plant classified into the Winteraceae family as shown in Figure 1 [1]. Akway grows naturally in the mountainous areas of West Papua specifically in Anggi district, Manokwari [2]. It is a wild plant used by the local community as a plant for traditional medicine. The locals use it as aphrodisiacs, tonics, antimalarials, and antioxidants [3–6]. They often use akway by scraping the bark, making it into powder, and infusing it with hot water. They drink the infusion or bite it during long journeys to increase endurance and stamina [7].

The high demand of akway and its limited availability in nature could potentially lead to adulteration [8]. Customers purchases akway in the market should be careful when buying the bark as it is organoleptically similar to cinnamon (*Cinnamomum burmannii* Nees Ex Bl.), where the colour and spicy taste of akway bark are identical to cinnamon [9].

Therefore, it is crucial to authenticate akway bark infusion. The authentication procedure was conducted using the UV spectroscopy method [10]. In this study, chemometrics techniques were mainly used to process the data due to its ability to combine statistics and mathematics in processing

chemical data [11]. The chemometrics applied in this study included the exploratory data analysis, multivariate calibrations, and discrimination techniques. The exploratory data analysis technique used in this study was the principal component analysis (PCA). The multivariate calibration techniques of principal component regression (PCR) and partial least squares (PLS) regression were applied to different spectral types in order to achieve the best predictive model for quantifying the adulterant content. The discrimination technique of sparse partial least squares discriminant analysis (sPLS-DA) along with parameter evaluation was conducted to perform authentication analysis of *Drimys piperita* Hook.f [12].

The objective of this study is to develop a method to authenticate the infusion of akway bark (*Drimys piperita* Hook f.) on cinnamon as the adulterant using UV spectroscopy and chemometrics techniques. Further, this study expects to contribute to the effort on detecting the quality of Indonesia native raw materials, especially from Papua, which has not been widely explored.

2. Materials and methods

2.1. Materials

The materials used in this study were akway bark obtained from Arfak Mountains, Manok-

Figure 1. Documentation of the *Drimys piperita* Hook f. tree bark

wari, Papua, Indonesia, cinnamon obtained from a local market in Jayapura, Papua, Indonesia, and distilled water obtained from the Laboratory of the Faculty of Pharmacy at Sanata Dharma University, Indonesia.

2.2. Tools

Tools used in the study were UV-Vis spectroscopy of Shimadzu® UV-800 brand, R software (version 4.3.3) and RStudio (version 2024.09.01 Build 394), cuvette (Hellma Analytics®), semi-micro analytical balance Ohaus® (PAJ1003 series max. 120g; min. 0.001g), Buchner erlenmeyer, Buchner funnel, vacuum, 100-1000 µL micropipette (Acura® 825), blue tip, volume pipette (Pyrex®), alcohol thermometer, hot plate, volumetric flask (Pyrex®), dropper pipette, beaker glass (Pyrex®), stirring rod, and oven.

2.3. Methods

The method used in this study refers to the previous research conducted by Riswanto et al with some modifications [10]. The chemometrics techniques were implemented during the study to identify akway bark infusion against cinnamon as the adulterant.

Table 1. Sample preparation of akway powder, cinnamon powder, and binary mixture containing akway and cinnamon powder

No	Labels	Weight of each component (g)		Number of replications
		Akway	Cinnamon	
1	A:C (100:0)	5.0	0.0	5
2	A:C (0:100)	0.0	5.0	5
3	A:C (10:90)	0.5	4.5	3
4	A:C (20:80)	1.0	4.0	3
5	A:C (30:70)	1.5	3.5	3
6	A:C (40:60)	2.0	3.0	3
7	A:C (50:50)	2.5	2.5	3
8	A: C (60:40)	3.0	2.0	3
9	A:C (70:30)	3.5	1.5	3
10	A:C (80:20)	4.0	1.0	3
11	A:C (90:10)	4.5	0.5	3

2.3.1. Preparation of infusion samples of akway bark, cinnamon bark, and their mixture

Akway bark and cinnamon bark were dried and then processed into a powder. The akway powder was weighed 5.0 mg and prepared in five replications. The cinnamon powder was weighed 5.0 mg and prepared in five replications. Calibration and validation test samples containing akway bark powder and cinnamon powder were prepared from a mixture of these ingredients with a concentration of 10-90% (w/w) in 10% intervals thus obtaining nine variations of concentration of solutions. Three replications were made where the first and second replications were used as calibration solutions and the third was used as a validation solution. The details of the sample preparation were presented in Table 1. Each replication was infused with hot water at 90°C up to a volume of 200 mL. The duration of the infusion process was 5 minutes.

2.3.2. Sample preparation for discrimination

Solutions for sPLS-DA analysis were prepared according to Table 1. All the solutions were subsequently labelled to create a discrimination analysis model.

2.3.3. Data acquisition using UV Spectroscopy

UV spectra scanning was carried out on the infusions of akway bark, cinnamon, and a mixture of both. The distilled filtrate was then poured into a cuvette and scanned at a wavelength of 210-400 nm.

2.3.4. Exploratory data analysis using PCA

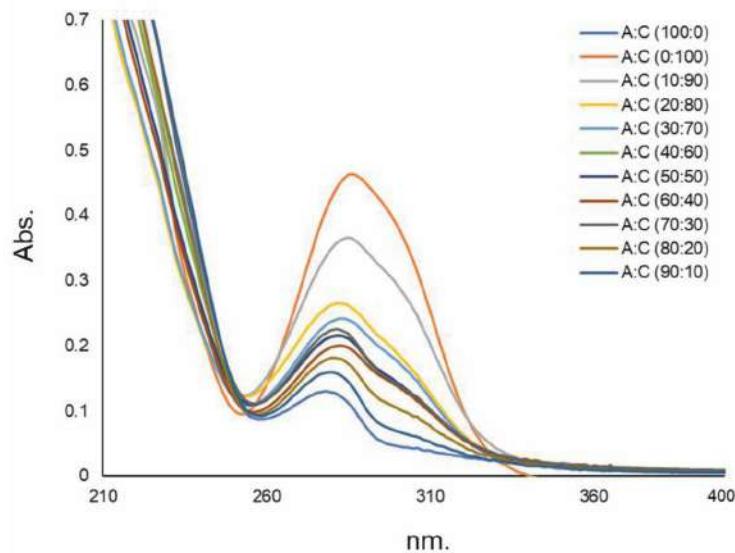
The UV spectra obtained from the spectra scanning stage were then evaluated. The dominant peaks from the analysis, namely akway bark, cinnamon, and samples of mixture containing both ingredients were utilised to build a PCA model. Scree plot, variable plot, and individual plot were displayed to visualize the model [13].

2.3.5. Multivariate calibration analysis

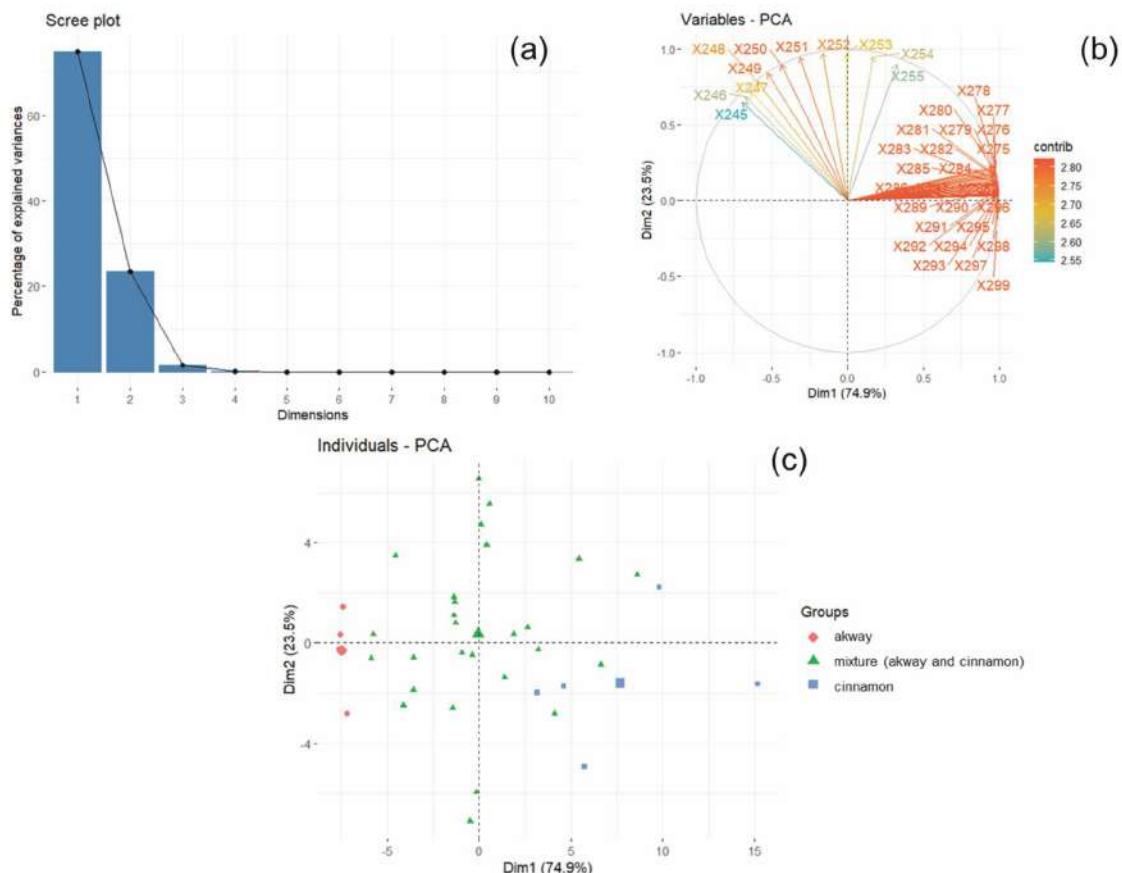
PCR and PLS multivariate calibration models were established to produce predictive models of the content of akway bark and cinnamon bark infusions. The performance of the multivariate calibration models was examined by evaluating statistical parameters including the coefficient of determination for calibration (R_{cal}^2), cross-validation (R_{cv}^2), validation (R_{val}^2), root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP). The cross-validation process, as an internal validation, used the leave one-out technique. The multivariate calibration models selected for each filtrate were determined by evaluating R_{cal}^2 , R_{cv}^2 , R_{val}^2 , RMSEC, and RMSEP [14].

2.3.6. sPLS-DA model development

The sPLS-DA model was produced using the UV spectra of akway bark, cinnamon, and samples of mixture containing both ingredients. Background prediction and 3D individual plot visualised the discrimination model. The model performance evaluation indicated the operational characteristic under curve-receiver (AUC-ROC) [15]. Further optimization of the model was carried out by selecting output variables until a final result that considered the error rate in classification and feature selection was obtained.


3. Results and discussion

This study developed a rapid detection technique for the adulteration of akway bark infusion using UV spectroscopy method combined with chemometrics techniques. This method was chosen for this study because it requires a minimal, convenient and quick preparation of materials [16]. The characteristics of UV spectra samples were classified in the wavelength range of 210-400 nm (Figure 2). The results of the UV spectra (210-400 nm) of the infusion samples of akway bark, cinnamon, and the mixture of akway bark and cinnamon are presented in Figure 2.


The three types of solutions showed similar spectra with peaks around 278, 286, and between 285-290 nm for akway bark, cinnamon bark, and the mixture of both, consecutively. However, the three profiles of spectra were not yet distinguishable from each other thus further application of chemometrics techniques was required [17]. According to the previous study, the capability of the development of a spectral predictive model can be linked with the UV spectrum profiles, allowing researchers to observe metabolites from plants effectively [18].

3.1. Exploratory data analysis

Principal Component Analysis (PCA) is a data processing technique for developing linear multivariate models from complex data sets. PCA allows visualization of data groupings and pre-evaluation of similarities between groups or classes through the correlation by considering chemical or chemical-physical properties [19]. Data processing from the analytical instrument using UV spectroscopy in the range 210-400 nm was conducted to generate a PCA model (Figure 3). From this wavelength range, a selection was made to determine the contributing wavelengths in each sample. Since there were profiles of spectral slope at the range of 245-255 nm and profiles of spectral curve peak at the range of 275-299 nm, a total of 36 distinctive wavelengths were identified in each sample. They are 245, 246, 247, 248,

Figure 2. UV spectra of the solution of akway tree bark, cinnamon tree bark, and a mixture solution containing akway and cinnamon tree bark. The number in the brackets indicate the mixing ratios created to observe the patterns of (A) the akway tree bark solution and (C) the cinnamon tree bark solution

Figure 3. Results of principal component analysis of the original spectra including: (a) scree plot, (b) variable plot, and (c) individual plot

249, 250, 251, 252, 253, 254, 255, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, and 299 nm. This spectral identification approach has been applied in this study due to the possibility of generating a predictive model by assessing the pattern from UV-Vis spectra [20].

Based on the observation and evaluation of spectra, 36 wavelengths were selected as variables to form the PCA model, including 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, and 299 nm. The absorption values of each wavelength were used to form a PCA model. The results obtained were in the form of: (1) a scree plot used for visual assessment which

showed the amount of variation possessed by each component or dimension, (2) a variable plot that was useful in evaluating the variables forming the main component through the angle between the vectors, and (3) an individual plot that represented the position of individual data on a two-dimensional display for two components [21]. Based on the scree plot, it was found that the involvement of two dimensions in the visualization indicated a total variance of 98.4% with the contributions from Dim1 (74.9%) and Dim2 (23.5%).

3.2. Multivariate calibration analysis

In this study, multivariate calibration was developed using PCR and PLS techniques [22]. These two techniques were used to predict the concen-

Table 2. The performance of principal component regression (PCR) and partial least squares (PLS) for predicting the content of akway tree bark and cinnamon tree bark in the infusion

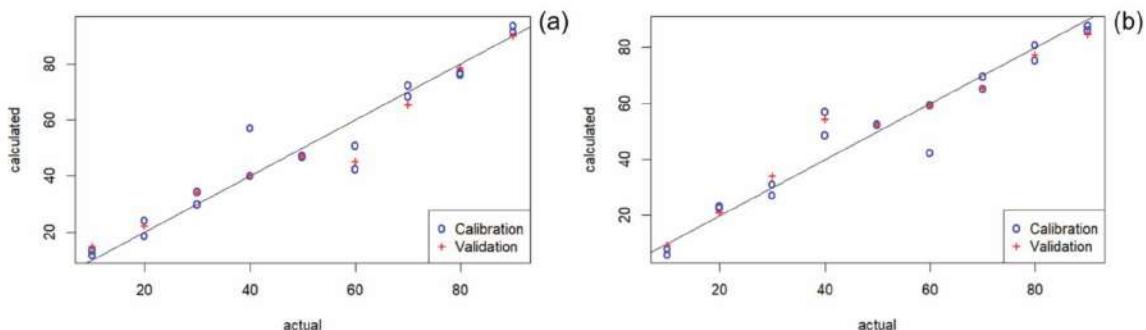
Samples	Multivariate calibration	Type of spectra	n	R _{cal} ²	RMSEC	R _{cv} ²	RMSECV	R _{val} ²	RMSEP
Akway	PCR	Original	3	0.933	6.709	0.910	7.748	0.958	5.292
		First derivative	4	0.922	7.199	0.891	8.520	0.963	4.990
		Second derivative	16	0.999	0.379	0.640	15.490	0.825	10.806
		SNV	2	0.926	7.012	0.907	7.869	0.967	4.666
		SG	3	0.932	6.753	0.903	8.037	0.955	5.451
	PLS	Original	3	0.933	6.679	0.904	8.013	0.957	5.349
		First derivative	2	0.910	7.744	0.881	8.917	0.934	6.694
		Second derivative	4	0.999	0.687	0.644	15.420	0.831	10.628
		SNV	2	0.928	6.929	0.903	8.044	0.971	4.399
		SG	3	0.933	6.703	0.900	8.152	0.956	5.440
Cinnamon	PCR	Original	3	0.933	6.709	0.910	7.748	0.958	5.292
		First derivative	4	0.922	7.199	0.891	8.520	0.963	4.990
		Second derivative	16	0.999	0.379	0.640	15.490	0.825	10.806
		SNV	2	0.926	7.012	0.907	7.869	0.967	4.666
		SG	3	0.932	6.753	0.903	8.037	0.955	5.451
	PLS	Original	3	0.933	6.679	0.904	8.013	0.957	5.349
		First derivative	2	0.910	7.744	0.881	8.917	0.933	6.694
		Second derivative	4	0.999	0.687	0.644	15.420	0.831	10.628
		SNV	2	0.928	6.929	0.903	8.044	0.971	4.399
		SG	3	0.933	6.703	0.900	8.152	0.956	5.440

Note: Selected models of calibration for each compound were marked with bold. PCR: Principal Component Regression; PLS: Partial Least Squares; SNV: Standard NormalVariate; SG: Savitzky-Golay smoothing with polynomial order of 3 and window width of 11 points; n: number of components.

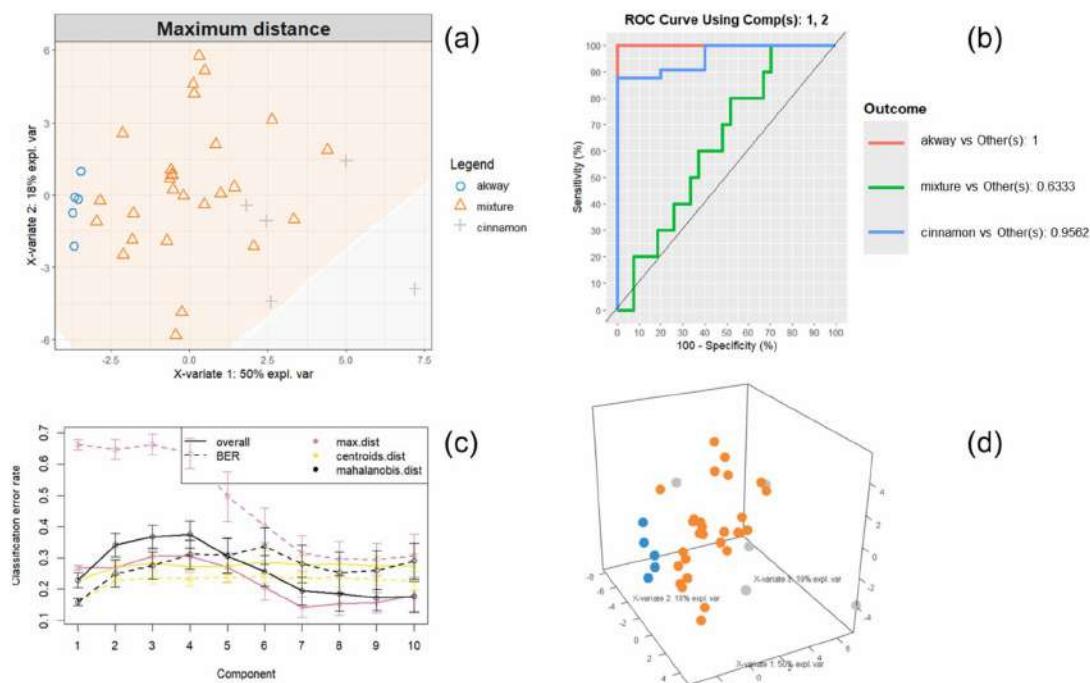
tration percentage of akway bark and cinnamon within the infusion to obtain the best prediction model in various modes of spectra (Table 2). The absorption data in the range of 210-400 nm were further processed through the pre-processing stage to produce original, first derivative, second derivative, standard normal variant (SNV), and Savitzky-Golay (SG) spectra. The prediction plot of the concentration percentage of akway bark and cinnamon in the infusion made from the best calibration model is presented in Figure 4.

The production of multivariate calibration models using PCR and PLS has been successfully conducted. The pre-processing stage enabled various types of spectra to be obtained including original, first derivative, second derivative, SNV, and SG spectra [23]. The overall output parameters were then evaluated, where a good R^2 value is one that is close to 1, while a good RMSE is one that shows the smallest value [24]. Evaluation was conducted on calibration, validation, and cross-validation data using the leave-one-out technique [25]. Based on the model performance evaluation results, it was found that PCR on the original spectrum showed the best quality of forming a multivariate calibration model for both akway bark and cinnamon bark infusions.

3.3. Discrimination using sPLS-DA


Spares partial least squares discriminant analysis (sPLS-DA) is an extension of sparse partial least squares (sPLS) regression that was applied for classification and discrimination purposes [26]. sPLS-DA was successfully produced for the

original spectrum along with graphical visualization (Figure 5) and it displayed a more effective and informative data presentation in the authentication of akway bark infusion.


The sPLS-DA model on the background prediction plot provided visualization and discrimination markers for each group. The classification of sample categorization was developed using a maximum likelihood model. For samples of akway bark, cinnamon, and a mixture containing both, the AUC-ROC plot illustrated the ability of the sPLS-DA model to discriminate. The AUC curve indicated the degree of separation of the model, while the ROC curve represented the probability of discrimination of the model [15]. There were 3 classes: akway bark showed 1 or 100%, cinnamon showed 0.956 or 95.6% while the mixture showed 0.633 or 63.3%. Based on these results, it was found that the sPLS-DA technique successfully discriminated the akway bark infusion against the adulterant in the form of cinnamon bark infusion by using UV spectroscopy and chemometrics techniques.

4. Conclusions

This study developed a rapid detection technique of akway bark to prevent it from adulteration using UV spectroscopy method combined with chemometrics techniques. Exploratory data analysis was conducted using the PCA technique, followed by developing a multivariate calibration model using the PLS and PCR and conducting dis-

Figure 4. Prediction plots of (a) akway tree bark infusion and (b) cinnamon tree bark infusion generated from the selected calibration model for each sample

Figure 5. Output of sPLS-DA processing for akway tree bark infusion authentication, including (a) background prediction plot, (b) AUC-ROC plot, (c) classification error rate plot, and (d) 3D individual plot

crimination using sPLS-DA. The best multivariate calibration model was obtained from the original spectrum which was processed using PCR for both akway bark and cinnamon bark. The sPLS-DA model was successfully produced and discriminated with the AUC-ROC values of 1.000, 0.956, and 0.633 for akway bark, cinnamon, and a mixture containing akway bark and cinnamon, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgement

Authors would like to acknowledge the local community in Arfak Mountains, Manokwari, Papua, Indonesia, for the assistance in sample collection. Authors also thank to Sanata Dharma

University, Indonesia for providing laboratory infrastructure to conduct this study.

Limitations of the study

This study has potential limitations. We acknowledge that taxonomic identification is crucial to be included in this research. However, we were unable to obtain the identification documents due to limited access, infrastructure, and documentation in the rural and restricted areas. To confirm the species identity, we consulted with a local community leader and conducted the identification at a local laboratory in Papua. Documentation of the *Drimys piperita* Hook f. tree bark used in this study is provided as Figure 1.

References

1. Fabanyo SH, Hardia L, Muslihin AM, Budiyanto AB, Irwandi I. Analisis fitokimia dan gugus fungsi

kulit kayu akway (*Drimys* sp.). *Jurnal Promotif Preventif*. 2023;6(6):976-982.

2. Sari DR, Husodo SB, Mutakim. Fitokimia dan bioaktifitas tumbuhan akway (*Drimys beccariana* Gibbs dan *Drimys piperita* Hook.f) dari Distrik Anggi Kabupaten Pegunungan Arfak. *Jurnal Kehutanan Papua*. 2022;8(1):102-113.

3. Dewi AMP, Santoso U, Pranoto Y, Marseno DW. Phytochemical and antioxidant activity of akway (*Drimys piperita* Hook f.) stem bark ethanol extract. *Advance Sustainable Science Engineering and Technology*. 2024;6(3):0240307-0240307.

4. Hutasoit H, Santjojo DJDH, Sumitro SB, Widjanarko SB. Complex compound with transitional metal of akway bark (*Drimys piperita* Hook f.) as low molecular weight scavenging antioxidant: A computational study: Complex compound of akway bark as scavenging antioxidant. *Journal of Tropical Life Science*. 2021;11(3):267-273.

5. Cepeda GN, Lisangan MM, Silamba I. Aktivitas antibakteri minyak atsiri kulit kayu akway (*Drimys piperita* Hook. f.) pada beberapa tingkat konsentrasi, keasaman (pH) dan kandungan garam. *Jurnal Aplikasi Teknologi Pangan*. 2019;8(4):149-154.

6. Hermanto F, Faramayuda F. Pengaruh pemberian ekstrak air kayu akway (*Drimys piperita* Hook. f.) pada pertumbuhan *Plasmodium falciparum* penyebab malaria. *Kartika : Jurnal Ilmiah Farmasi*. 2017;5(1):24-26.

7. Hallik N, Pratiwi RD, Gunawan E. Pengembangan produk minuman tonikum kulit kayu akway (*Drimys piperita*): Prospek penambah stamina tubuh secara in vivo. *Jurnal Biologi Papua*. 2021;13(1):44-51.

8. Alyas AA, Aldewachi H, Aladul MI. Adulteration of herbal medicine and its detection methods. *Pharmacognosy Journal*. 2024;16(1):248-254.

9. Kaka FA, Mushollaeni W, Tantalu L. Processing and production of herbal dipping beverages: A comparison of akway (*Drimys* spp.) and cinnamon (*Cinnamomum* spp.) barks. *Journal of Industrial Engineering & Technology Innovation*. 2023;1(2):23-32.

10. Riswanto FDO, Rohman A, Pramono S, Martono S. The employment of UV-Vis spectroscopy and chemometrics techniques for analyzing the combination of genistein and curcumin. *Journal of Applied Pharmaceutical Science*. 2021;11(3):154-161.

11. Biancolillo A, Marini F, Ruckebusch C, Vitale R. Chemometric strategies for spectroscopy-based food authentication. *Applied Sciences*. 2020;10(6544):1-34.

12. Prayoga A, Windarsih A, Apriyana W, Riswanto FDO, Istyastono EP. Authentication of grape seed face oil using FTIR spectroscopy combined with chemometrics techniques. *International Journal of Applied Pharmaceutics*. 2024;16(5):220-224.

13. Irnawati, Riswanto FDO, Riyanto S, Martono S, Rohman A. The use of software packages of R factoextra and FactoMineR and their application in principal component analysis for authentication of oils. *Indonesian Journal of Chemometrics and Pharmaceutical Analysis*. 2021;1(1):1-10.

14. Riswanto FDO, Windarsih A, Putri DCA, Gani MR. An integrated authentication analysis of *Citrus aurantium* L. essential oil based on FTIR spectroscopy and chemometrics with tuning parameters. *Indonesian Journal of Pharmacy*. 2023;34(2):205-217.

15. Narkhede S. Understanding AUC - ROC curve. Towards data science. 2018. Accessed: September 11, 2020.

16. Dzulfianto A, Riswanto FDO, Rohman A. The employment of UV-spectroscopy combined with multivariate calibration for analysis of paracetamol, propyphenazone and caffeine. *Indonesian Journal of Pharmacy*. 2017;28(4):191-197.

17. Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. *Frontiers in Chemistry*. 2018;6(NOV):1-14.

18. Brugger A, Schramowski P, Paulus S, Steiner U, Kersting K, Mahlein AK. Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley-powdery mildew interaction. *Plant Pathology*. 2021;70(7):1572-1582.

19. Jolliffe IT, Cadima J. Principal component analysis: A review and recent developments. *Philosophical Transactions of the Royal Society A*:

Mathematical, Physical and Engineering Sciences. 2016;374(2065):1-16.

20. Zeng R, Mannaerts CM, Lievens C. Assessment of UV-VIS spectra analysis methods for quantifying the absorption properties of chromophoric dissolved organic matter (CDOM). *Frontiers in Environmental Science*. 2023;11(April):1-12.

21. Sridhar K, Charles AL. Application of multivariate statistical techniques to assess the phenolic compounds and the in vitro antioxidant activity of commercial grape cultivars. *Journal of Chemometrics*. 2018;32(12):1-13.

22. Mevik BH, Wehrens R. Introduction to the Pls Package; 2019.

23. Rinnan Å, Berg FVD, Engelsen SB. Review of the most common pre-processing techniques for near-infrared spectra. *TrAC - Trends in Analytical Chemistry*. 2009;28(10):1201-1222.

24. Martono Y, Riyanto S, Martono S, Rohman A. Determination of stevioside and rebaudioside a from simulated stevia beverages using FTIR spectroscopy in combination with multivariate calibration. *Research Journal of Medicinal Plants*. 2016;10(5):349-355.

25. Yadav DK, Kaushik P, Pankaj, et al. Microwave assisted synthesis, characterization and biological activities of ferrocenyl chalcones and their QSAR analysis. *Frontiers in Chemistry*. 2019;7(November):1-15.

26. Jiménez-Carvelo AM, Martín-Torres S, Ortega-Gavilán F, Camacho J. PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. *Talanta*. 2021;224(121904):1-10.