

Jurnal Penelitian Pendidikan IPA

Jurnal Penelitian Pendidikan IPA

Jurnal Penelitian Pendidikan IPA contains scientific articles form of research results that include science, technology, and teaching in the field of science. **Jurnal Penelitian Pendidikan IPA** is published monthly. Authors across the globe are welcome to submit their research papers in the prestigious journal fulfilling the requisite criterion.

Journal Metrics : All Time

[View All Statistics](#)

65%
Acceptance Rate

105
Days to First Decision

133
Days to Acceptance

5706
Submissions Published

Author Origins : **34 Countries**

99% **0%** **0%** **0%** **1%**

ISSN: 2407-795X , 2460-2582

[About the Journal](#)

[Current Issue](#)

[Announcements](#)

Journal title	: Jurnal Penelitian Pendidikan IPA
Initials	: JPPIPA
Editor-in-chief	: Prof. Aris Doyan, Ph.D ↗
Online ISSN	: 2407-795X ↗
DOI Prefix	: 10.29303/jppipa
Indexing	: Google Scholar and view more ↗
Peer Review Process	: blind-Review
Frequency	: Monthly
Publisher	: Postgraduate University of Mataram ↗
Association	: Perkumpulan Pendidik IPA Indonesia ↗
Citation Analysis	: Dimensions, Google Scholar
Language	: English

Jurnal Penelitian Pendidikan IPA provides immediate **OPEN ACCESS** to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Jurnal Penelitian Pendidikan IPA index by: [|Crossref|](#) [|Sinta DIKTI|](#) [|Indonesian Public Index \(IPI\)|](#) [|Google Scholar|](#) [|Indonesian One Search|](#) [|Bielefeld Academic Search Engine \(BASE\)|](#) [|Index Copernicus International \(ICI\) World of Journals|](#) [|PKP Index|](#) [|Academic Recource Index|](#) [|Mendeley|](#) [|Garuda Ristekdikti|](#) [More...](#)

Jurnal Penelitian Pendidikan IPA promotes research in the field of science and Science Education with particular respect to Indonesia, but not limited to authorship or topical coverage within the region. Contributions are expected from scientists, educators, senior researchers, project managers, research administrators, and students at advanced stages of their research. To be published in **Jurnal Penelitian Pendidikan IPA**, a rigorous review process will be done.

The editorial contents and elements that comprise the journal include:

- Theoretical articles
- Empirical studies.
- Case studies
- Systematic Literature Review.

The editorial board welcomes manuscripts from Science and Science Education. The scopes of **Jurnal Penelitian Pendidikan IPA** are:

1. Science (Chemistry, Physics, and Biology)
2. Science Education
3. Chemistry Education
4. Physics Education
5. Biology Education
6. Education Technology
7. Application science (Chemistry, Physics and Biology, Agriculture, Environmental Science)
8. Model, Methods, and Strategies of Learning in science education

EDITORIAL TEAM

REVIEWERS

FOCUS & SCOPE

PUBLICATION ETHICS

INDEXING AND ABSTRACTING**ARCHIVING INFORMATION****Journal Template**

Journal Template

Visitors & Statistics

Visitors		See more ►
	ID 753,799	TW 2,385
	PH 48,102	JP 2,363
	SG 47,437	BR 2,336
	US 32,545	DE 2,222
	CN 27,872	ZA 2,222
	MY 15,508	NG 2,185
	IN 11,559	CA 2,156
	TR 8,392	HK 2,068
	TH 5,947	RU 2,065
	GB 5,166	KR 1,930
	AU 4,678	EG 1,829
	VN 3,281	NL 1,706
	PK 3,219	PE 1,678
	IR 2,750	FR 1,485
Pageviews:		2,417,501
Flags Collected:		214

View My Stats

Journal Tools

MENDELEY

zotero

turnitin

grammarly

Keywords

import tariff

erang
massage
ckdckd
aching materials

yul

peer support

xerosis
sets-based
biopesticides
dialysis
forest

OPEN ACCESS JOURNAL

UNIVERSITAS MATARAM

JOURNALS PUBLISHER

This journal is published by Postgraduate University of Mataram. University of Mataram is a higher education institution under the Ministry of Education and Culture of Indonesia.

CONTACT US

- 📞 Phone. 081936732708
- ✉️ Mail. jppipa@unram.ac.id
- 🌐 Web. <https://jppipa.unram.ac.id>

INFORMATION

For Authors

For Readers

For Librarians

Platform &
workflow by
OJS / PKP

Jurnal Penelitian Pendidikan IPA

[Home](#) / Editorial Team

Editorial Team

Editor in Chief

- **Aris Doyan**, ID SCOPUS: [37461206900](#), University Of Mataram, Mataram, Indonesia

Managing Editor

- **Hamidi**, ID SCOPUS: [57216950915](#), University Of Mataram, Mataram, Indonesia

Editorial Board

- **David Todd Campbell**, ID SCOPUS: [25633499100](#), University Of Connecticut, United States
- **Muhammad Zurhalqi**, Vistula University, Poland.
- **Muhammad Aziz**, ID SCOPUS: [56436934500](#), University Of Tokyo, Japan
- **Jakrapong Kaewkhao**, SCOPUS ID: [23974520300](#); Nakhon Pathom Rajabhat University, Thailand
- **Firdaus Ali**, SCOPUS ID: [57197439497](#), Jamia Millia Islamia (A Central University), New Delhi, India
- **Muhammad Roil Bilad**, SCOPUS ID: [36999741400](#), Universiti Brunei Darussalam, Brunei Darussalam.
- **Azlan Kamari**, ID SCOPUS: [6507553589](#), Universiti Pendidikan Sultan Idris, Malaysia
- **Mohd Mustafa Awang Kechik**, ID SCOPUS: [18037839400](#), Universiti Putra Malaysia, Malaysia
- **Baba Musta** ID SCOPUS: [23976431800](#), Universiti Malaysia Sabah, Malaysia
- **Shaiful J. Hashim**, ID SCOPUS: [55444812700](#), Computer and Communication Systems Engineering, Universiti Putra Malaysia, Malaysia
- **Mohd Asri Mat Teridi**, ID SCOPUS: [12801271200](#), Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Malaysia
- **Ali AL-Mokaram** ID SCOPUS: [57196001359](#), Mustansiriyah University, Iraq
- **Khalid Ahmed Rabaeh** ID SCOPUS: [24329973600](#), Hashemite University, Jordan
- **Lily Maysari Angraini**, ID SCOPUS: [57201867813](#), Molecular Science Technology National Taiwan University, Taiwan
- **Abdul Samad**, Muhammad Nawaz Shareef University Of Agriculture, Pakistan
- **Suyitno**, ID SCOPUS: [57205025494](#), Master of Primary Health Care Management Alumni, ASEAN Institute for Health Development, Mahidol University, Thailand

- **Musawer Hakimi** ID SCOPUS: [59708013000](#), Computer science department, Education Faculty, Samangan University, Afghanistan
- **Susilawati**, ID SCOPUS: [57205535848](#), University Of Mataram, Mataram, Indonesia
- **Nazarudin**, ID SCOPUS: [57193922612](#), University Of Jambi, Jambi, Indonesia
- **Muhammad Satriawan**, ID SCOPUS: [35183989100](#), Universitas Negeri Surabaya, Surabaya, Indonesia
- **Rosmiati**, ID SCOPUS: [57215568825](#) Universitas PGRI Adi Buana Surabaya, Surabaya, Indonesia
- **Ruth Rize Paas Megahati S**, ID SCOPUS: [57202285085](#), Universitas Nahdlatul Ulama Sumatera Barat, Sumatera, Indonesia
- **Susanna Halim**, ID SCOPUS: [59550877600](#), Fakultas Kedokteran, Kedokteran Gigi Dan Ilmu Kesehatan, Universitas Prima Indonesia, Indonesia
- **Mukhlis**, ID SCOPUS: [55745927900](#), Politeknik Pertanian Negeri Payakumbuh, Sumatera Barat, Sumatera, Indonesia
- **Randi Kurniawan**, ID SCOPUS: [58798163900](#), Sport Sciences, Universitas Negeri Medan, Medan, Indonesia
- **Desak Made Anggraeni**, ID SCOPUS: [57214728134](#), Universitas Katolik Weetebula, Sumba Barat Daya, Indonesia
- **Syarful Annam**, ID SCOPUS: [60054332800](#), Universitas Negeri Makasar, Makasar, Indonesia
- **Putu Artayasa**, ID SCOPUS: [57200114787](#), University Of Mataram, Mataram, Indonesia
- **Saprizal Hadisaputra**, ID SCOPUS: [55544930300](#), University Of Mataram, Mataram, Indonesia
- **Ni Nyoman Sri Putu Verawati**, ID SCOPUS: [57193126887](#), University of Mataram, Mataram, Indonesia
- **Muhammad Taufik**, ID SCOPUS: [57208293041](#), Univerity Of Mataram, Mataram, Indonesia
- **Muhammad Nasir**, ID SCOPUS: [57212334906](#), IAIN Palangka Raya, Palangka Raya, Indonesia
- **Ahmad Khori**, ID SCOPUS: [57205058900](#), Universitas Sebelas Maret, Surakarta, Indonesia
- **I Gusti Ngurah Yudi Handayana**, ID SCOPUS: [57212062714](#), University Of Mataram, Mataram, Indonesia
- **Lalu Mulyadi**, ID SCOPUS: [57214232960](#), University Of Mataram, Mataram, Indonesia.
- **Agus Muliadi**, ID SCOPUS: [57257467800](#), Universitas Pendidikan Mandalika, Mataram, Indonesia.
- **Haris Munandar**, ID SCOPUS: [57235026900](#), University of Mataram, Mataram, Indonesia.
- **Syamsul Hakim**, ID SCOPUS: [57200086454](#), University of Mataram, Mataram, Indonesia.
- **Yusran Khery**, ID SCOPUS: [57235026900](#), Universitas Pendidikan Mandalika, Mataram, Indonesia.
- **Sudirman**, ID SCOPUS: [57208476723](#), University of Qamarul Huda Badaruddin Bagu, Lombok Tengah, Indonesia
- **Husnul Fuadi**, ID SCOPUS: [57459560500](#), University of Mataram, Mataram, Indonesia.
- **Baiq Nunung Hidayati**, ID SCOPUS: [57222759654](#), University of Mataram, Mataram, Indonesia.
- **Zulhalifah**, ID SCOPUS: [57222759654](#), University of Mataram, Mataram, Indonesia.
- **Thufail Mujaddid Al-Qooyim**, ID SCOPUS: [60205695000](#), University of Mataram, Mataram, Indonesia.
- **Dedi Riyani Rizaldi**, ID SCOPUS: [58777387900](#), Institut Agama Islam Al-Manan NU Lombok Timur, Lombok Timur, Indonesia.
- **Lalu Sahrul Hudha**, ID SCOPUS: [57221948038](#), University of Mataram, Mataram, Indonesia.
- **Ibrahim**, ID SCOPUS: [57925475900](#), University of Mataram, Mataram, Indonesia.
- **Ziadatul Fatimah**, ID SCOPUS: [57460249200](#), University of Mataram, Mataram, Indonesia.

Layout Editor

- **Muhammad Ikhsan**, Balai Publikasi Indonesia, Mataram, Indonesia.

- **Muhammad Hipzul Mursyid**, University Of Mataram, Indonesia.

IT Supporting

- **Muhammad Zulfikar**, Institute Of Research And Community Service, University Of Mataram, Indonesia
- **Ahmad Zafrullah Mardiansyah**, Informatics Engineering, Faculty of Engineering, University of Mataram, Indonesia
- **Afif Sugi Hendrianto**, Politeknik Negeri Jember, Indonesia

EDITORIAL TEAM

REVIEWERS

FOCUS & SCOPE

PUBLICATION ETHICS

INDEXING AND ABSTRACTING

ARCHIVING INFORMATION

Journal Template

Visitors & Statistics

Visitors

	ID 753,799		TW 2,385		MX 1,452
	PH 48,102		JP 2,363		ES 1,410
	SG 47,437		BR 2,336		IE 1,345
	US 32,545		DE 2,222		IT 1,212
	CN 27,872		ZA 2,222		CO 1,202
	MY 15,508		NG 2,185		SA 1,195
	IN 11,559		CA 2,156		GR 1,073
	TR 8,392		HK 2,068		BD 922
	TH 5,947		RU 2,065		SE 874
	GB 5,166		KR 1,930		KE 852
	AU 4,678		EG 1,829		IQ 787
	VN 3,281		NL 1,706		EC 781
	PK 3,219		PE 1,678		
	IR 2,750		FR 1,485		

[See more ▶](#)

Pageviews: 2,417,501

Flags Collected: 214

View My Stats

Journal Tools**Keywords**

rice bug
peat forest
basic movement skills
design of teaching materials
sets-based
increasing creativity
hyperbilirubinemia
pruritus
xerosis
sorakdastra
formative
ckd
hemodialysis
hlg londerang
husband's support
peer support
diagnostic
massage

OPEN ACCESS JOURNAL
UNIVERSITAS MATARAM

JOURNALS PUBLISHER

This journals is published by Postgraduate University of Mataram. University of Mataram is a higher education institution under the Ministry of Education and Culture of Indonesia.

CONTACT US

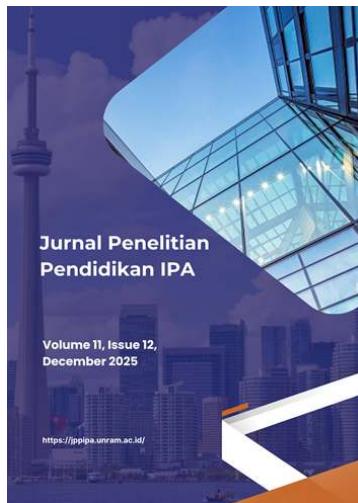
- 📞 Phone. 081936732708
- ✉️ Mail. jppipa@unram.ac.id
- 🌐 Web. <https://jppipa.unram.ac.id>

INFORMATION

For Authors

For Readers

For Librarians


Platform &
workflow by
OJS / PKP

Jurnal Penelitian Pendidikan IPA

[Home](#) / [Archives](#) / Vol. 11 No. 12 (2025): December: In Progress

Vol. 11 No. 12 (2025): December: In Progress

Jurnal Penelitian Pendidikan IPA (JPPIPA), Online ISSN: **2407-795X**, Print ISSN: **2460-2582**

The open-access articles in this issue is distributed under a (CC-BY License)

DOI: [10.29303/jppipa.v11i12](https://doi.org/10.29303/jppipa.v11i12)

Published: 2025-12-31

Author Origin : **1 Country**

442

Research Articles

Review

Effectiveness of Interactive Learning Media Based on Virtual Laboratory on Scientific Literacy and Concept Mastery in Dynamic Electricity

Asnianti A. Awila , Tirtawaty Abdjul , Muhammad Yusuf , Abdul Haris Odja , Mursalin , Supartin
1-10

DOI: 10.29303/jppipa.v11i12.13530

Statistics: 0 | 0

 Citations

0

 PDF

Spatial Dynamics of Land Cover Change in the Ngata Toro Customary Forest, Toro Village, Kulawi District, Sigi Regency, from 2021 to 2025

Cesar A. Mappatoba , Imran Rachman , Adam Malik , Golar , Sudirman Dg. Massiri , Andi Sahri Alam
11-19

DOI: 10.29303/jppipa.v11i12.12698

Statistics: 0 | 0

 Citations

?

 PDF

Bridging Technology and Values: Opportunities and Barriers to Artificial Intelligence-Supported Meaningful Learning in Elementary School

Yeni Erita , Aisyah Anggraeni , Risma Amini , Silvi Hevria
20-26

DOI: 10.29303/jppipa.v11i12.13096

Statistics: 0 | 0

 Citations

?

 PDF

Blockchain Strategy Model in the Fisheries Supply Chain to Support the SDGs in the Fisheries Industry

Arie Wahyu Prananta , Indra Jaya Kusuma Wardana , I Wayan Suyadnya , Iqbal Mahcfud Fauzi
27-34

DOI: 10.29303/jppipa.v11i12.12347

Statistics: 0 | 0

 Citations

?

 PDF

Development of Discovery Learning-Based Interactive Infographic Media on Renewable Energy Materials for Elementary School Students

Raini Marita , Deris Stiawan , Makmum Raharjo
35-42

DOI: 10.29303/jppipa.v11i12.12689

Statistics: 0 | 0

 Citations

?

 PDF

Assessment of Bias-Correction Methods for CHIRPS Satellite Rainfall Estimates in the Petung Watershed, Indonesia

Nafisah Zahrani , Ery Suhartanto , Ussy Andawayanti
43-51

DOI: 10.29303/jppipa.v11i12.13250

Statistics: 0 | 0

 Citations

?

 PDF

The Role of Agricultural Counselors' Performance in Shaping Rice Farmers' Satisfaction and Behavior: A Regional Study in East Java, Indonesia

Faisol Humaidi , Teguh Soedarto , Mubarokah , Nuriah Yuliati

52-62

DOI: 10.29303/jppipa.v11i12.13358

Statistics: 0 | 0

 Citations

?

 PDF

Development of Interactive E-Modules for Literacy Courses in Physics Learning Assisted by Google Sites to Improve Students' Problem-Solving Skills

Dea Stivani Suherman , Fuja Novitra , Rani Oktavia , Hayyu Yumna , Asrizal

63-77

DOI: 10.29303/jppipa.v11i12.13463

Statistics: 0 | 0

 Citations

?

 PDF

Community-Ecosystem Interaction in East Java: Barriers to Participation and Implications for Natural Resources Policy

Marningot Tua Natalis Situmorang , Linda Noviana , Bunga Cahyaputri

78-89

DOI: 10.29303/jppipa.v11i12.13520

Statistics: 0 | 0

 Citations

?

 PDF

The Strength of Several Types of Bamboo from Around Palu City as a Substitute for Wood in Construction

Erniwati , Ariyanti , Sahri Alam , Mutmainnah , Asniati , Rahmawati

90-97

DOI: 10.29303/jppipa.v11i12.13424

Statistics: 0 | 0 **Citations**

?

 PDF

Improving the Knowledge of Mothers of Toddlers and Preschool Children on Early Detection of Child Growth and Development through the Prona-Kepo Approach

Mariyani , Ita Herawati , Resi Galaupa

98-103

DOI: 10.29303/jppipa.v11i12.13473**Statistics:** 0 | 0 **Citations**

?

 PDF

The Influence of the Probaluson Learning Model on the Attitudes and Science Learning Outcomes of Grade VIII Students at SMP Negeri 6 Sentani, Jayapura Regency

Rosaniya E. Rehiara

104-112

DOI: 10.29303/jppipa.v11i12.13198**Statistics:** 0 | 0 **Citations**

?

 PDF

Development of Integrated TaRL Teaching Materials to Foster Deep Learning in Elementary School

Yantoro , Muhammad Sholeh , Mohamad Muspawi , Ahmad Hariandi , Eka Sastrawati , Sri Marmoah

113-122

DOI: 10.29303/jppipa.v11i12.13017**Statistics:** 0 | 0 **Citations**

?

[!\[\]\(55acab083b8cbf36d4a75f262b6ea94a_img.jpg\) PDF](#)

The Effect of Adding Water Hyacinth (*Eichhornia crassipes*) Fermented with *Aspergillus niger* in Feed on Protein Retention of Tilapia (*Oreochromis niloticus*)

Syavira Azzahra , Firdus Firdus , Lenni Fitri

123-130

DOI: 10.29303/jppipa.v11i12.10029

Statistics: 0 | 0

 Citations

?

[!\[\]\(eca9dca13a2688a2d5e75f35d4cc16aa_img.jpg\) PDF](#)

Descriptive Analysis of Risk Factors and Trends in Healthcare-Associated Infections: A 5-Year Retrospective Surveillance Study in East Java, Indonesia (2019-2023)

Aine Artalia , Elsye Maria Rosa

131-141

DOI: 10.29303/jppipa.v11i12.13278

Statistics: 0 | 0

 Citations

?

[!\[\]\(bb57180dea8b51f2cabbaadafb467a2e_img.jpg\) PDF](#)

Diagnosing and Remediating Misconceptions in Magnetism: An Integrated Conceptual Change and Simulation-Based Approach for Elementary Students

Nur Ngazizah , Siska Desy Fatmaryanti

142-148

DOI: 10.29303/jppipa.v11i12.13016

Statistics: 0 | 0

 Citations

?

[!\[\]\(be0aa3dee883f3733e80bd07e8eabb3c_img.jpg\) PDF](#)

Monitoring the Effectiveness of Energy Consumption for Old Buildings Using Data Gathered Through Temperature, Humidity, and Light Intensity

John Reigton Hartono , Ditdit Nugeraha Utama

149-159

DOI: 10.29303/jppipa.v11i12.11706

Statistics: 0 | 0

 Citations

?

 PDF

Geo-Exploration Outdoors: Utilizing Green Open Spaces for Learning Geography Concepts

Angel Hidayat , Dedi Hermon

160-169

DOI: 10.29303/jppipa.v11i12.13288

Statistics: 0 | 0

 Citations

?

 PDF

The Effectiveness and Durability of Organic Olive Oil, Bengkoang, and Butterfly Pea Flower Soap for Dry Skin

R. A Mukti , F. H Fatmasari , I Nuraini , U. M. Rochmawati , K. A. Trisna Dewi

170-177

DOI: 10.29303/jppipa.v11i12.13632

Statistics: 0 | 0

 Citations

?

 PDF

Development of IPAS Instructional Materials Based on Project-Based Learning (PjBL) for Sixth-Grade Elementary Students

Novi Sri Wahyuni , Abna Hidayati , Alwen Bentri , Ramalis Hakim , Suci Fajrina
178-184

DOI: 10.29303/jppipa.v11i12.12408

Statistics: 0 | 0

Citations

?

 PDF

Validity Analysis of a Science Process Skills Assessment Instrument for High School Students in Chemistry

Faderina Komisia , Maria Benedikta Tukan , Diana Yanni Ariswati Fallo , Gradiana Jenisa Perlita Hale , Geosefina Besi Meta , Petronela Onika Lanmai , Fransiska Eflani , Maria Aloisia Uron Leba
185-193

DOI: 10.29303/jppipa.v11i12.12860

Statistics: 0 | 0

Citations

?

 PDF

The Effect of the Composition of Planting Media and the Concentration of Plant Growth-Promoting Rhizobacteria (PGPR) on the Growth and Yield of Bird's Eye Chili (*Capsicum frutescens* L.)

Imanda Setyawan , Juli Santoso , Saefurrohman
194-204

DOI: 10.29303/jppipa.v11i12.12966

Statistics: 0 | 0

Citations

?

 PDF

Abductive Reasoning in Scientific Information Literacy: Students' Understanding of Climate Change in Social Media

Nur Rahmah , Supriyatman , Raya Agni , Rahmita , Pahriadi

205-214

DOI: 10.29303/jppipa.v11i12.12918**Statistics:** 0 | 0 Citations

?

 PDF

Development of an Integrating Ethnoscience Module in Project-Based Learning to Enhance the Pedagogical Competence of Elementary Teacher Education Students

Nasharuddin , Muhammad Amin Said, Amri Amal, Andi Adam Mahendra

215-227

DOI: 10.29303/jppipa.v11i12.12691**Statistics:** 0 | 0 Citations

?

 PDF

Effects of Organic Matter from Paitan (*Tithonia diversifolia*) on the Growth Performance of Arabica Coffee (*Coffea arabica*) Seedlings in Ultisols

Ridwan, Fathurrahman, Bunga Elim Somba, Muslimin, Abdul Rahim Saleh

228-236

DOI: 10.29303/jppipa.v11i12.13049**Statistics:** 0 | 0 Citations

?

 PDF

Development of Smart Ethno-STEM (System of Mobile Augmented Reality Technology) in Organic Chemistry to Enhance Students' Metacognitive Skills and Scientific Literacy

Yoga Dwi Prasetyo , Ayu Tri Khodizah, Novan Alkaf Bahraini Saputra

237-248

DOI: 10.29303/jppipa.v11i12.12998

Statistics: 0 | 0 **Citations**

?

 PDF

Factors Affecting Indonesian Students' Science Achievement: A Multilevel Analysis of the PISA Dataset

Tia Asri Ivanka , Ezra Putranda Setiawan

249-260

DOI: 10.29303/jppipa.v11i12.11602**Statistics:** 0 | 0 **Citations**

?

 PDF

From Culture to Science: Exploring Scientific Knowledge in the Making of Wadi, a Traditional Dish of the Dayak and Banjar

Silvita , Opik Prasetyo , Ulya Ruwaida , Zevira Fransisca Aurora , Rina Oktaviana

261-268

DOI: 10.29303/jppipa.v11i12.12413**Statistics:** 0 | 0 **Citations**

?

 PDF

Analysis Level of Interest in The Last Planner System (LPS) and Factors Influencing The Level of its Implementation

Muhammad Amin Rais , Imam Alfianto , Apif Miftahul Hajji

269-276

DOI: 10.29303/jppipa.v11i12.13477**Statistics:** 0 | 0 **Citations**

?

[!\[\]\(8992432513afb96f45a69bb5f0f74668_img.jpg\) PDF](#)

Optimization of in Vitro Culture of Taro Banana (*Musa paradisiaca* var. *sapientum* L.) Based on Thidiazuron: A Foundation for Developing a Biotechnology Booklet to Enhance Decision-Making Skills

Titin Purnaningsih , Kimeni , Yohannes Edi Gunawan , Akhmadi , Nuriman , Chaidir Adam , Silvita , Ririn Fahrina , Ennike Gusti Rahmi

277-282

DOI: [10.29303/jppipa.v11i12.13368](https://doi.org/10.29303/jppipa.v11i12.13368)

Statistics: 0 | 0

 Citations

?

[!\[\]\(ddcf340df088b0c427bc303a4557fd6c_img.jpg\) PDF](#)

Collaborative Problem-Solving Approach for Fostering Students' Creativity in Physics Practicum

Saiyidah Mahtari , Arif Sholahuddin

283-289

DOI: [10.29303/jppipa.v11i12.13121](https://doi.org/10.29303/jppipa.v11i12.13121)

Statistics: 0 | 0

 Citations

?

[!\[\]\(be792788206b1d58bfa43ff4b9e191e5_img.jpg\) PDF](#)

Learning Profile of Students with Intellectual Disabilities through the E-LAPD Live Worksheet on Chemical Reactions Material

Jihan Sakinah Al Farhani , Soekarmiani , Rahmania Fitrah Sari , Ima Kurrotun Ainin , Dian Novita

290-297

DOI: [10.29303/jppipa.v11i12.13104](https://doi.org/10.29303/jppipa.v11i12.13104)

Statistics: 0 | 0

 Citations

?

[!\[\]\(19d2c7fcd0c76f9bdd1dd5dca7669cdc_img.jpg\) PDF](#)

Evaluation of Students' Learning Outcomes on the Human Digestive System Topic through the Discovery Learning Method in Grade VIII of Nurul Iman Middle School, Palembang

RR. Mini Sariwulan , Abdul Hadi , Ra. Hoetary Tirta Amallia , Sugeng Setiyanto , Fairuzzabadi Amrullah , Muhammad Fauzi Romadhan
298-307

DOI: 10.29303/jppipa.v11i12.13092

Statistics: 0 | 0

 Citations

?

 PDF

A Study of Physics Scientific Literacy and Students' Learning Independence in Three Subdistricts of East Lombok

Laxmi Zahara , Made Hery Santosa , I Wayan Widiana
308-315

DOI: 10.29303/jppipa.v11i12.13243

Statistics: 0 | 0

 Citations

?

 PDF

Improving Students' Green Energy Practical Skills Through Project-Based Industrial Electronics Learning for Sustainable Development Goals

Yunesman , Ambiyar , Hermasyah
316-324

DOI: 10.29303/jppipa.v11i12.12595

Statistics: 0 | 0

 Citations

?

 PDF

The Validity of Educational Games Kahoot as Learning Assessment Tools for Prospective Biology Teacher Students

Nana Citrawati Lestari , Rezky Nefianthi , Rabiatul Adawiyah

325-332

DOI: 10.29303/jppipa.v11i12.12602

Statistics: 0 | 0

 Citations

?

 PDF

Comparative Analysis of Behavioral Theories in Promoting CPR: A Theory-Based Approach to Cardiopulmonary Resuscitation Training in Community

Abdurahman Wahid , Dina Septiany , Sri Widati , Sri Haryuni , Nurma Afiani , Novita Ana Anggraini

333-340

DOI: 10.29303/jppipa.v11i12.13502

Statistics: 0 | 0

 Citations

?

 PDF

UI/UX Design of Influencer Selection Application with User Centered Design Method

Choki Ferdiyansyah , Arif Amrulloh , Maryona Septiara

237-248

DOI: 10.29303/jppipa.v11i12.13703

Statistics: 0 | 0

 Citations

?

 PDF

Uric Acid Level Examination in the Elderly Using the POCT Method to Analyze Factors Associated with Hyperuricemia

Erdanelia Setiawati

349-359

DOI: 10.29303/jppipa.v11i12.13258

Statistics: 0 | 0

 Citations

?

 PDF

Optimizing the Traditional Agroforestry System (Dusung) of the Airlouw Community: Review of Ecology and Productivity of Food Commodities

Noviar Flasiana Wenko , Simon Matakena

360-366

DOI: 10.29303/jppipa.v11i12.13522

Statistics: 0 | 0

 Citations

?

 PDF

Enhancing Primary Pupils' Reading Interest through Illustrated Science Storybooks: A Sequential Explanatory Study

I Komang Wisnu Budi Wijaya , Made Hery Santosa , I Wayan Widiana

367-378

DOI: 10.29303/jppipa.v11i12.13963

Statistics: 0 | 0

 Citations

?

 PDF

Effect of Organic Mulch on Pest, Disease and Productivity of Cayenne Pepper (*Capsicum Frutescens L.*)

Wildan Muhlison , Irwanto Sucipto , Hari Purnomo , I Nyoman Wijaya Paramudita , Nabilah Aulia Rohmah , Tri Wahyu Saputra , Syafina Pusparani

379-392

DOI: 10.29303/jppipa.v11i12.12684**Statistics:** 0 | 0 **Citations**

?

 PDF

The Impact of Sleep Quality on Premenstrual Syndrome Among Females in Three Districts of Agam Regency, West Sumatra

Rara Mulia Sari , Winati Nurhayu , Iffa Afifa Khairani , Andy Darmawan

393-399

DOI: 10.29303/jppipa.v11i12.13021**Statistics:** 0 | 0 **Citations**

?

 PDF

Development of Geography Literacy-Based Learning Models in an Effort to Build Spatial Intelligence in Students

Yulia Permata Sari , Afdhal , Bayu Wijayanto , Lailatur Rahmi

400-408

DOI: 10.29303/jppipa.v11i12.13071**Statistics:** 0 | 0 **Citations**

?

 PDF

Development of Canva-Based Interactive Educational Comic Media for Science and Social Studies Learning in Elementary Schools

Rinadevi , Abna Hidayati , Yalvema Miaz , Elfia Sukma

409-416

DOI: 10.29303/jppipa.v11i12.13274**Statistics:** 0 | 0 **Citations**

?

[!\[\]\(e98fe3539845e3adab171914dbd47898_img.jpg\) PDF](#)

Needs Analysis: Project Based Learning and Digital Transformation Transformasi Digital of the Merdeka Curriculum IPA Terpadu Learning

Iman Nasrulloh , Rivan Syahrul Falah , Ihpad Maulana
417-426

DOI: 10.29303/jppipa.v11i12.12975

Statistics: 0 | 0

 Citations

?

[!\[\]\(ba6ba954e46cf978c7cb2eb8a8df1225_img.jpg\) PDF](#)

Analysis of Strengths and Weaknesses of Locally Wisdom-Based Tourism Village: A Study of Sering Village, Pelalawan Regency, Riau Province, Indonesia

Muhammad Syafi'i , Dina Syafita , M. Jaya Adi Putra , Naila Fauza , Ririn Jauharaini
427-436

DOI: 10.29303/jppipa.v11i12.13353

Statistics: 0 | 0

 Citations

?

[!\[\]\(818b5263167cc22e2a73dc0ac285e99a_img.jpg\) PDF](#)

Misconceptions of Elementary School Teachers in Character Education: A Mixed Methods Study in Indonesia

Nana Suryana , Wahyu Sopandi , Yadi Ruyadi
437-441

DOI: 10.29303/jppipa.v11i12.13193

Statistics: 0 | 0

 Citations

?

[!\[\]\(6dabb642aadef102cf9fb38db235c132_img.jpg\) PDF](#)

Biodiversity and Carbon Storage in Mangroves with Varying Protection in North Sulawesi

Wawan Nurmawan , Martina A. Langi
442-449

DOI: 10.29303/jppipa.v11i12.13082

Statistics: 0 | 0

 Citations

?

 PDF

Development of E-LKM Multicultural Education Based on Case Method as a Student Learning Resource

Nisa'u Rifka Latiffah , Ervan Johan Wicaksana , Dara Mutiara Aswan
450-454

DOI: 10.29303/jppipa.v11i12.13078

Statistics: 0 | 0

 Citations

?

 PDF

Analysis of the Implementation of Automatic Feeding IoT Systems on the Productivity of Catfish (Clarias sp.) Aquaculture

Talitha Amanda , Sandra Dewi Elizabet Kaunang , Miswanto , Muhammad Chairil Apriandi ,
Raden Faqih
455-463

DOI: 10.29303/jppipa.v11i12.13023

Statistics: 0 | 0

 Citations

?

 PDF

Antibacterial Potential of *Muntingia calabura* L. Ethanol Extract Against MDR *Escherichia coli*

Yuri Pratiwi Utami , Saparuddin Latu , Rahmah Mustarin , Imrawati , Aditya Yudistira , Rahmatia
464-472

DOI: 10.29303/jppipa.v11i12.7765

Statistics: 0 | 0

 Citations

?

 PDF

Integration of Digital Systems and Sitorem Method for Strengthening Science Management

Iman Indrati , Henny Suharyati , Dian Wulandari

473-480

DOI: 10.29303/jppipa.v11i12.13563

Statistics: 0 | 0

 Citations

?

 PDF

Waste Utilization for Neutralization of Acid Mine Drainage Using Fly Ash, Bottom Ash, and Goat Manure Granules

Diah Permata Rinaldi , Irdika Mansur , Hamim
481-490

DOI: 10.29303/jppipa.v11i12.13312

Statistics: 0 | 0

 Citations

?

 PDF

The Effectiveness of a Canva-Based Educational Game on Students' IPAS Learning Outcomes in Elementary Schools

Kusmirah , Siti Dewi Maharani , Sardianto Markos Siahaan

491-502

DOI: 10.29303/jppipa.v11i12.13362**Statistics:** 0 | 0 Citations

?

 PDF

Implementation of Biogas Systems in Broiler Farms to Improve Biosecurity and Sustainable Economic Value

Sri Wahyuni , Dadang Jaenudin , Rindi Handayani

503-512

DOI: 10.29303/jppipa.v11i12.13272**Statistics:** 0 | 0 Citations

0

 PDF

Development of Digital Scrapbook Module Teaching Materials as a Science Learning Innovation to Improve Students' Conceptual Understanding

Muhamad Sangaji , Fitri Damayanti , Acep Musliman , Hasbullah , Andri Suryana

513-520

DOI: 10.29303/jppipa.v11i12.13377**Statistics:** 0 | 0 Citations

0

 PDF

Validity and Practicality of the Physics E-Module on Integrated Thermodynamics Material on Volcanic Eruptions Based on the ICARE Model to Improve Students' Creative Thinking Skills

Muhammad Arlim , Ahmad Fauzi

521-527

DOI: 10.29303/jppipa.v11i12.13332

Statistics: 0 | 0 Citations

0

 PDF

Spatio-Temporal Analysis of Land Cover for Estimating UHI Using GEE in Gorontalo City

La Ode Juni Akbar , Arthur Gani Koto , Ahmad Syamsu Rijal

528-540

DOI: 10.29303/jppipa.v11i12.13297**Statistics:** 0 | 0 Citations

0

 PDF

Analysis of Added Value and Development Strategy for The Coconut-Based Food Industry in North Sulawesi Province

Herry F. Pinatik , Dedia Tooy , Maya Hendrietta Montolalu , Denny Saroinsong , Asnidar Mastam , Mukhlis , Teltje Koapaha , Rine Kaunang

541-549

DOI: 10.29303/jppipa.v11i12.13236**Statistics:** 0 | 0 Citations

?

 PDF

Enhancing Science Learning through the Development of Animation Video Media Based on Bruner's Cognitive Theory Using Canva for Students

Eliza Novita , Abna Hidayati , Darmansyah , Ridwan

550-560

DOI: 10.29303/jppipa.v11i12.13270**Statistics:** 0 | 0 Citations

?

[!\[\]\(3a826c315649e5ff8d9ba7aee7a8e49e_img.jpg\) PDF](#)

A Mobile Technology-Based Empowerment Model for Arabic Language Teachers in Developing Animated Learning Videos at Rural Islamic Boarding School

S. Ali Jadid Al Idrus , M. Syarifuddin , Leny Cahyani , Radin Paras Raharja

561-569

DOI: 10.29303/jppipa.v11i12.12113

Statistics: 0 | 0

 Citations

?

[!\[\]\(b3c43aac59394256bcd38a2701b16027_img.jpg\) PDF](#)

The Impact of the REACT Learning Model on Students Activity and Academic Performance

Suci Hapizah , Ernawati , Dedi Hermon

570-578

DOI: 10.29303/jppipa.v11i12.13401

Statistics: 0 | 0

 Citations

0

[!\[\]\(aca0204fa99dd7cfeb7f9c20d47b755a_img.jpg\) PDF](#)

The Use of Quizizz Based Gamification to Enhance Student Satisfaction in Learning

Anggun Sasmita , Paus Iskarni , Dedi Hermon

579-585

DOI: 10.29303/jppipa.v11i12.13400

Statistics: 0 | 0

 Citations

0

[!\[\]\(e23c06f6134d80061def2d0fafc2877e_img.jpg\) PDF](#)

Transformation of Collaborative Project-Based Learning to Improve 21st Century Learning Outcomes in the Society 5.0 Era

Diqi Arian , Paus Iskarni , Dedi Hermon

586-593

DOI: 10.29303/jppipa.v11i12.13399

Statistics: 0 | 0

 Citations

0

 PDF

Effect of Pakkat Ethanol Extract (Calamus L. Blum) on Spermatogenesis and Testosterone Levels of Diabetes Mellitus Wistar Rats

Yolanda Eliza Putri Lubis , Anggi Sri Ananda Aipin , Hanjaya , Juliana Lina , Suhartomi

594-601

DOI: 10.29303/jppipa.v11i12.13495

Statistics: 0 | 0

 Citations

?

 PDF

Honing Scientific Logic: Cognitive Intervention Strategies in Scientific Literacy and Numeration for Primary School Children

Nancy Susianna , Yosephine Debbie Damayanti , Angie Siti Perdani , Rinda Angghita Putri ,

William Xaveriano Waresindo , Elvinda Juita Grace Zai , Bernadus Albertus Salaisek ,

Theresia Susanti Salolosit

602-610

DOI: 10.29303/jppipa.v11i12.13383

Statistics: 0 | 0

 Citations

?

 PDF

Implementation of E-LKPD on Acid-Base Socio-Scientific Issues to Improve Critical Thinking Skills and Learning Motivation

Faira Yovanie , Roza Linda , Lenny Anwar
611-619

DOI: 10.29303/jppipa.v11i12.11455

Statistics: 0 | 0

 Citations

?

 PDF

The Impact of Green Innovation on Corporate Sustainability Performance: A Case Study of Micro, Small, and Medium-Sized Enterprises (MSMEs) in Malang City, Indonesia

Arga Bayu Rachman , Anthon Efani , Dini Atikawati
620-630

DOI: 10.29303/jppipa.v11i12.13267

Statistics: 0 | 0

 Citations

?

 PDF

Implementation of the SCCrT-Augmented Reality Model to Improve Students' Critical and Creative Thinking Skills and Science Literacy in Chemical Bonding Concepts

Rusmansyah , Parham Saadi , Hestu Anggra , Ade Rahmawati Idris , Gusti Aulia Nasution ,
Puput Riadi , Vermiana Nur Utami
631-639

DOI: 10.29303/jppipa.v11i12.13085

Statistics: 0 | 0

 Citations

?

 PDF

Analytical Thinking Abilities in Physics Education Students: A Rasch-Based Diagnostic Study

Amsor , M Reza Dwi Saputra , Nurdini , Filzah Nabila Asri , Siti Almaidah
640-651

DOI: 10.29303/jppipa.v11i12.13444

Statistics: 0 | 0

 Citations

0

 PDF

The Needs Analysis in the Development of a Vibration and Wave Course for Improving the Scientific Reasoning Skills of Prospective Physics Teachers

Dwi Fajar Saputri , Nurhayati , Lukman Hakim Alsaggaf , Wahyudi , Adi Pramuda
652-661

DOI: 10.29303/jppipa.v11i12.13338

Statistics: 0 | 0

 Citations

?

 PDF

Regulation of the Independent Electricity System in Batam City as a Basis for the Development of Energy Science and Technology

Rosa Darman , Huala Adolf , Riesa Susanti
662-669

DOI: 10.29303/jppipa.v11i12.13097

Statistics: 0 | 0

 Citations

0

 PDF

Characterization and Utilization of Woka (*Saribus rotundifolius* (Lam.) Blume.) Based on Local Wisdom of the People of Bolaang Mongondow Regency

Wawan Nurmawan , Hengki D. Walangitan , Maria Y. M. A. Sumakud , Euis F. S. Pangemanan

670-675

DOI: 10.29303/jppipa.v11i12.13159**Statistics:** 0 | 0 Citations

?

 PDF

Development of Gamification-Based Learning Media on Environmental Change Topics for Senior High School Students

Afiwiyuna , Abdullah , Ismul Huda

685-693

DOI: 10.29303/jppipa.v11i12.13227**Statistics:** 0 | 0 Citations

?

 PDF

Analysis of Teachers' Professional Competence in Strengthening Students' Problem-Solving Skills through the Implementation of Unplugged Coding in IPAS Learning

Arditya Angga Raharja , Wakhudin

676-684

DOI: 10.29303/jppipa.v11i12.13537**Statistics:** 0 | 0 Citations

?

 PDF

Sustainable Mangrove Management As An Effort to Achieve the Sustainable Development Goals in Donggala Regency

Muthia , Riyadi Slamet , Mustainah , Pageno Isbon , Irfan Mufti

694-703

DOI: 10.29303/jppipa.v11i12.13618

Statistics: 0 | 0

Citations

0

 PDF

Experiment on the Effect of Pineapple Ecoenzyme on the Morphological Growth of Green Beans (*Vigna radiata L.*) as an Effort to Promote Environmentally Friendly Fertilization

Faudina Permatasari

704-712

DOI: 10.29303/jppipa.v11i12.13426

Statistics: 0 | 0

Citations

0

 PDF

Characterization and Effectiveness Testing of a Transdermal Patch Combining Red Betel Leaf Extract and Tapak Liman Extract for the Healing of Diabetic Gangrene Wounds

Hanun Aisy Marwa , Nadine Ayu Syaima Gustaf Prins , Alliva Ro'ain Abbiyu Imanita ,

Fania Putri Wiba Maharani , Rahmawati Salsa Dinurrosifa

713-722

DOI: 10.29303/jppipa.v11i12.13292

Statistics: 0 | 0

Citations

0

 PDF

Abundance and Diversity of Plankton as Bioindicators of Coastal Paddy-Field Water Quality in Batang Regency, Indonesia

Ari Handriatni , Heri Ariadi , Farchan Mushaf Al Ramadhan , Ubad Badrudin , Syakiroh Jazilah ,

Rohmatul Amin , M. Akmal Faza , Samsul Ma'Arif , Candra Dwi Pradana , Anandya Hadiprasetya

723-732

DOI: 10.29303/jppipa.v11i12.12550**Statistics:** 0 | 0 **Citations**

?

 PDF

Determination of the Optimal Formulation of Gorojo Banana and Gedi Leaf Composite Flour Based on Antioxidant Activity and Physicochemical Properties

Mercy I R Taroreh , Edi Suryanto , Thelma D.J. Tuju

733-742

DOI: 10.29303/jppipa.v11i12.13411**Statistics:** 0 | 0 **Citations**

0

 PDF

Physical Properties, Chemical Properties, and Fertility of Soil under the Natural Stands of Ebony (*Diospyros celebica* Bakh.)

Asgar Taiyeb , Adam Malik , Imran Rachman , Muhardi

743-755

DOI: 10.29303/jppipa.v11i12.13524**Statistics:** 0 | 0 **Citations**

0

 PDF

Development of Interactive Multimedia Motion Graphics Based on Reroroja Mangrove Local Wisdom to Improve Conceptual Understanding of IPAS

Marsela Rinielda Dua , Paula Emerentiana , Maria Vigilina Lena Maran

756-765

DOI: 10.29303/jppipa.v11i12.13423**Statistics:** 0 | 0 **Citations**

?

 PDF

Development Strategy of Buluballea Agritourism Area in Pattapang Village, Tinggimoncong District, Gowa Regency, South Sulawesi

Andi Aslam Nugraha Nur , Bagyo Yanuwiadi , Sri Sudaryanti
766-776

DOI: 10.29303/jppipa.v11i12.13321

Statistics: 0 | 0

 Citations

?

 PDF

Evaluation of the Implementation of Occupational Safety and Health in the Construction of a Four-Storey Building (Case Study: Construction of the Ishk Tolaram Eye Clinic in Batu City)

Fifi Damayanti , Handika Setya Wijaya , Suhudi
777-789

DOI: 10.29303/jppipa.v11i12.12334

Statistics: 0 | 0

 Citations

?

 PDF

Sustainability Status of Vaname Shrimp (Penaeus vannamei) Pond in Coastal Areas of Lamongan Regency

Destrina Elita Koto , Asus Maizar Suryanto Hertika , Jati Batoro
790-801

DOI: 10.29303/jppipa.v11i12.13419

Statistics: 0 | 0

 Citations

?

 PDF

Beyond Content Validity: Comprehensive Validation of Scientific Literacy Assessment for Junior High School Teachers

Kintan Limiansih , Albertus Hariwangsa Panuluh , Niluh Sulistyani
802-813

DOI: 10.29303/jppipa.v11i12.13043

Statistics: 0 | 0

 Citations

?

 PDF

The Impact of Augmented Reality Media on IPAS Learning Outcomes: A Moderated Analysis of Learning Motivation

Septi Misliza , Anisah , Yeni Erita , Muhammadi
814-820

DOI: 10.29303/jppipa.v11i12.13533

Statistics: 0 | 0

 Citations

?

 PDF

The Effect of Science Games on Classification and Critical Thinking Skills in Young Children

Baiq Wike Pratamaswari , Gunawan , Fahrurrobin
821-829

DOI: 10.29303/jppipa.v11i12.13336

Statistics: 0 | 0

 Citations

?

 PDF

Development of IoT-Based Physics Teaching Aids for Basic Physics Practicum

Sari Wahyuni Rozi Nasution , Thofik Hidayat , Lia Purnama Sari , Hanifah Nur Nasution , Dwi Aninditya Siregar , Unita Sukma Zuliani Nasution 830-836

DOI: 10.29303/jppipa.v11i12.13441

Statistics: 0 | 0

 Citations

?

 PDF

Macroscopic and Microscopic Analysis of Dollar Plant Leaves (*Zamioculcas zamiifolia* (Lodd.))

Surahmaida , Aurelia Nabila Salsa Putri Bogar

837-844

DOI: 10.29303/jppipa.v11i12.13337

Statistics: 0 | 0

 Citations

?

 PDF

Analysis of Nursing Service Quality Based on Servqual and Al-Islam Kemuhammadiyah Values as Determinants of BPJS Patient Loyalty

Nova Rita , Linda Handayuni , Sri Nova Deltu , Mandria Yundelfa , Farisa Anggela

845-852

DOI: 10.29303/jppipa.v11i12.13663

Statistics: 0 | 0

 Citations

?

 PDF

Immune Response to Dengue Fever Infection in Endemic Areas of Lombok Barat

Erlin Yustin Tatontos , Ersandhi Reshnileksmana , Urip

853-860

DOI: 10.29303/jppipa.v11i12.13163

Statistics: 0 | 0 **Citations**

?

 PDF

Integrating Technology and Psychometrics: Developing an App-Based Diagnostic Tool Using the Partial Credit Model to Uncover Student Misconceptions

Nurhasanah , Zul Hidayatullah , Hajra Yansa , Moh. Badrus Sholeh Arif , Muh Asriadi

861-872

DOI: 10.29303/jppipa.v11i12.12305**Statistics:** 0 | 0 **Citations**

?

 PDF

A Study of the Fishery Logistics System in Fisheries Management Area (WPP) 715, Tomini Bay, Central Sulawesi

Fachrudin , Umar , Mawar , Moh.Arif Latjuba

873-881

DOI: 10.29303/jppipa.v11i12.13286**Statistics:** 0 | 0 **Citations**

?

 PDF

Perception of Nursing Managers Regarding the Implementation of Nurse Napping During Night Shifts

Zifriyanti Minanda Putri , Lusi Andani , Esthika Ariany Maisa

882-889

DOI: 10.29303/jppipa.v11i12.13601**Statistics:** 0 | 0 **Citations**

?

 PDF

The Role of Accompanying Teachers in Improving Students' Achievement on the Topic of Growth and Development at SMP Negeri 6 Banda Aceh

Khairunnisa , Saudah , Ibrahim , Muhammad Ridhwan , Evi Apriana
890-895

DOI: 10.29303/jppipa.v11i12.13366

Statistics: 0 | 0

 Citations

?

 PDF

Development and Validation of the Affiliation-Interpersonal Skills Questionnaire (AIS-Q) for Culturally Responsive Science Learning in Pre-Service Elementary Teachers

Aisyah Ali , Singgih Bektiarso , Auldry Fransje Walukow , Erlia Narulita ID , Akhmad Kadir
896-909

DOI: 10.29303/jppipa.v11i12.13064

Statistics: 0 | 0

 Citations

?

 PDF

Inventory of Medicinal Plants in the Ethnobotanical Traditions of the West Sumatran Community

Filza Yulina Ade , Fadilaturahmah , Rahmi Kurniati
910-917

DOI: 10.29303/jppipa.v11i12.13136

Statistics: 0 | 0

 Citations

?

 PDF

The Sustainability Analysis of Shallot Farming of The Lembah Palu Variety in Sigi Regency

Lien Damayanti , Made Krisna Laksmayani , Shintami Rouwelvia Malik , Mohammad Reyvaldi , Sitti Hardiyanti M.M , Olivia Esther C.R , Mukhlis
918-928

DOI: 10.29303/jppipa.v11i12.13206

Statistics: 0 | 0

 Citations

?

 PDF

The Effects of Livelihood Assets and Livelihood Strategies on the Welfare Level of Community Forestry Farmers in Alam Lestari, West Lombok

Ainun Awallunisa Fatimah , Bramasto Nugroho , Leti Sundawati
929-940

DOI: 10.29303/jppipa.v11i12.13914

Statistics: 0 | 0

 Citations

?

 PDF

Status of Sustainability Mangrove Ecosystem in Ecomarine Mangrove Muara Angke, Jakarta

Talida Salma Khairunnisa , Sri Mulatsih , Efi Yuliaty Yovi
941-949

DOI: 10.29303/jppipa.v11i12.11853

Statistics: 0 | 0

 Citations

?

 PDF

EDITORIAL TEAM

REVIEWERS

FOCUS & SCOPE

PUBLICATION ETHICS

INDEXING AND ABSTRACTING

ARCHIVING INFORMATION

Journal Template

Visitors & Statistics

Visitors[See more ▶](#)

	ID 753,745		TW 2,385		MX 1,452
	PH 48,098		JP 2,363		ES 1,410
	SG 47,436		BR 2,335		IE 1,345
	US 32,542		DE 2,222		IT 1,212
	CN 27,866		ZA 2,222		CO 1,202
	MY 15,508		IT 2,185		SA 1,195
	IN 11,558		CA 2,156		GR 1,073
	TR 8,392		HK 2,068		BD 922
	TH 5,946		RU 2,065		SE 873
	GB 5,166		KR 1,930		KE 852
	AU 4,678		EG 1,829		IQ 787
	VN 3,281		NL 1,706		EC 781
	PK 3,219		PE 1,678		
	IR 2,750		FR 1,485		

Pageviews: 2,417,310

Flags Collected: 214

View My Stats

Journal Tools**Keywords**

hlg londerang peer support
 jaundice baby storyline application
 diagnostic basic movement skills
 pruritus husband's support sets-based
 athletic focus xerosis design of ckd
 teaching materials sorakdastra
 massage hemodialysis rice bug
 summative

OPEN ACCESS JOURNAL
UNIVERSITAS MATARAM

JOURNALS PUBLISHER

This journals is published by Postgraduate University of Mataram. University of Mataram is a higher education institution under the Ministry of Education and Culture of Indonesia.

CONTACT US

- 📞 Phone. 081936732708
- ✉️ Mail. jppipa@unram.ac.id
- 🌐 Web. <https://jppipa.unram.ac.id>

INFORMATION

For Authors

For Readers

For Librarians

Platform &
workflow by
OJS / PKP

Beyond Content Validity: Comprehensive Validation of Scientific Literacy Assessment for Junior High School Teachers

Kintan Limiansih^{1*}, Albertus Hariwangsa Panuluh², Niluh Sulistyani³

¹ Primary Teacher Education Study Program, Faculty of Teacher Training and Education, Universitas Sanata Dharma, Yogyakarta, Indonesia.

² Physics Education Study Program, Faculty of Teacher Training and Education, Universitas Sanata Dharma, Yogyakarta, Indonesia.

³ Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Sanata Dharma, Yogyakarta, Indonesia.

Received: October 06, 2025

Revised: November 14, 2025

Accepted: December 29, 2025

Published: December 31, 2025

Corresponding Author:

Kintan Limiansih

kintan@usd.ac.id

DOI: [10.29303/jppipa.v11i12.13043](https://doi.org/10.29303/jppipa.v11i12.13043)

© 2025 The Authors. This open access article is distributed under a (CC-BY License)

Abstract: Despite the central role of teachers in fostering students' scientific literacy, assessment instruments targeting in-service science teachers remain limited. This study aimed to develop and examine the preliminary quality of a scientific literacy instrument for junior high school science teachers, informed by OECD documents outlining the direction of the PISA 2025. A design-based research approach was employed using Tessmer's formative evaluation model, encompassing iterative stages of preliminary analysis to pilot field test. The instrument comprised nine context-rich stimuli and 25 items across multiple formats designed to elicit scientific reasoning and decision-making in real-world contexts. Expert validation produced a Mean Expert Score of 4.67, while teacher readability evaluation yielded a Mean Readability Score of 4.29, indicating strong content representation and clarity. Pilot psychometric analysis showed a balanced distribution of item difficulty (32% easy, 40% moderate, and 28% difficult), and item-level validity and discrimination indices provided diagnostic evidence for refinement. Pilot psychometric analysis indicated that the instrument's reliability remains preliminary and highlights the need for further refinement through larger-scale field testing. Overall, this study contributes a forward-looking assessment instrument that supports formative evaluation of teachers' scientific literacy and provides a robust foundation for subsequent large-scale validation aligned with emerging international assessment orientations.

Keywords: Design-based research; Junior high school; Scientific literacy; Teacher

Introduction

Scientific literacy has become a central competence in contemporary education, particularly in preparing citizens to engage with complex socio-scientific issues related to public health, environmental sustainability, and technological change (Osborne & Allchin, 2024; Schenk et al., 2021; Sjöström, 2024). International frameworks conceptualize scientific literacy not merely as mastery of scientific concepts, but as the capacity to interpret scientific information, evaluate evidence, and apply scientific reasoning for informed decision-making in real-world contexts (OECD, 2023c; Schenk et al., 2021). Scientific literacy plays a strategic role in advancing the Sustainable Development Goals (SDGs), particularly

those related to quality education, public health, and environmental sustainability, by equipping individuals to critically engage with scientific knowledge and contribute to sustainable societal development (Osborne & Allchin, 2024; Sjöström, 2024; United Nations, 2025)

Moving beyond mastery of subject content to also include the ability to interpret scientific information, evaluate evidence, and make appropriate decisions on socio-scientific issues (Coppi et al., 2023; OECD, 2023b; Roy et al., 2025). As an essential competency, literacy is regarded as one of the main pillars for achieving the Sustainable Development Goals (SDGs) (Mckay, 2018), particularly in ensuring inclusive and quality education. Literacy also supports progress toward other SDGs, including reducing social inequality, increasing

How to Cite:

Limiansih, K., Panuluh, A. H., & Sulistyani, N. (2025). Beyond Content Validity: Comprehensive Validation of Scientific Literacy Assessment for Junior High School Teachers. *Jurnal Penelitian Pendidikan IPA*, 11(12), 802-813. <https://doi.org/10.29303/jppipa.v11i12.13043>

employment opportunities, and improving understanding of health and climate change issues, all of which contribute to sustainable development in a holistic sense (Kioupi & Voulvoulis, 2019; Sjöström, 2024).

In the PISA conceptualization, scientific literacy is placed at the core of preparing citizens who can participate responsibly in society (OECD, 2023a). It includes competencies such as explaining phenomena scientifically, designing and evaluating investigations, and interpreting data and evidence, which applied within personal, local, and global contexts (OECD, 2023c). However, scientific literacy outcomes in Indonesia remain a serious concern. In PISA 2022, Indonesian students performed far below the OECD average, with more than 60% scoring below proficiency Level 2 in science (OECD, 2023b). Findings from Indonesian studies also report low scientific literacy among junior high school students across science topics and learning settings (Hasasiyah et al., 2020; Jamaluddin et al., 2019; Yusmar & Fadilah, 2023). These results suggest that strengthening scientific literacy in lower secondary education is still an urgent need.

Teachers play a central role in shaping students' scientific literacy because they translate curriculum aims into classroom practice, guide inquiry and reasoning, and help students connect science ideas with real-world problems. Evidence from teacher education research shows that effective professional development—continuous training, mentoring, and collaboration—supports better instructional quality and student learning outcomes (Darling-Hammond et al., 2017; Sæleset & Friedrichsen, 2021). At the classroom level, Indonesian research also indicates that literacy-oriented learning and assessment practices can support students' critical thinking and science understanding (Hartina et al., 2020; Jamaluddin et al., 2019). In short, improving student scientific literacy is difficult without also strengthening teachers' competence and assessment practice. This is a crucial issue, as research has shown that teachers' scientific literacy has a significant impact on student learning outcomes (Habibi & Suparman, 2020; Yusmar & Fadilah, 2023).

Yet, strengthening teachers requires more than general encouragement; it requires clear diagnostic tools. In teacher professional development, a suitable framework and valid instruments are needed to map teachers' strengths and areas that require support (Eliyawati et al., 2023; Fe Bustamante & EMercado, 2024). However, most scientific literacy assessments and instrument development studies in Indonesia still focus on students or pre-service teachers (Hidayah & Rusilowati, 2019; Rahmadani et al., 2018; Suwono et al., 2022). Many instruments are developed for students or for specific content areas in the previous studies, for

example, scientific literacy tests linked to particular topics or enrichment materials, and critical thinking instruments validated through Rasch analysis (Aryani et al., 2024; Faisal et al., 2023; Mulyana & Desnita, 2023; Widiatmo et al., 2019). Some studies also highlight literacy-related instructional approaches (e.g., PBL-STEM) that may support student outcomes (Parenta et al., 2022). These contributions are valuable, but they also show that standardized instruments targeting in-service junior high school science teachers remain limited.

Local evidence further supports the importance of this work. A survey of 62 science teachers in Yogyakarta reported that 61% of teachers claimed they understood scientific literacy (Limiansih et al., 2024). However, self-reported understanding does not automatically reflect the ability to apply scientific literacy concepts in teaching or assessment. This creates a practical need for a validated instrument that can examine teachers' scientific literacy more objectively and provide feedback that is useful for professional development (Hung & Wu, 2024).

Therefore, this study aims to develop a scientific literacy instrument for in-service junior high school science teachers and to report its content validation through layered validation stages. The development is guided by internationally recognized frameworks, particularly the PISA 2025 Science Framework (OECD, 2023c), and follows a multi-stage process that includes expert review, one-to-one interviews with practitioners, and small-scale field trials—steps commonly recommended in instrument development and formative evaluation (Coppi et al., 2023; Darman et al., 2024; Tessmer, 2005).

The instrument developed in this study was informed by the draft framework and conceptual directions outlined in OECD documents for the PISA 2025 cycle, rather than by an official or finalized assessment framework (OECD, 2023c). This forward-looking alignment was deliberately chosen because the target population of the study is in-service junior high school science teachers, for whom assessment instruments serve not only a diagnostic function but also a professional learning and anticipatory function (Sæleset & Friedrichsen, 2021; Kang et al., 2025). By engaging teachers with emerging emphases in scientific literacy, such as contextual reasoning, decision-making, and epistemic understanding, the instrument aims to provide a futuristic learning experience that introduces teachers to the evolving direction of international science assessments, while remaining grounded in the current empirical challenges highlighted by PISA 2022 (OECD, 2023a; Osborne & Allchin, 2024).

Method

This study uses a Design-Based Research (DBR) approach, which seeks to develop and validate scientific literacy instruments in real-world settings. The approach follows an iterative cycle of design, implementation, evaluation, and revision, with the goal of producing an instrument that is both theoretically sound and practically useful (McKenney & Reeves, 2025). For the development process, the Tessmer model was applied, consisting of several stages: preliminary investigation, self-evaluation, expert review and one-to-one sessions, small-group testing, and field trials (Tessmer, 2005). The overall process is illustrated in Figure 1.

Figure 1. Stages of design and development research based on the Tessmer model

Instrument development followed the Tessmer model, consisting of four stages as follows: Stage (1), Preliminary, focused on identifying and understanding the context and objectives of the product development. At this stage, a literature review was conducted on Indonesian PISA student data and the role of teachers, highlighting the link between teacher literacy skills and student literacy outcomes. Stage (2), Self-evaluation, involved developing the initial version of the scientific literacy instrument and reviewing its alignment with the PISA 2025 Science Framework. Stage (3) included expert review of the instrument and one-to-one evaluations with junior high school science teachers to examine item readability. Stage (4) consisted of a small-group trial with a limited number of respondents. The present study was carried out up to Stage (4), focusing on construct validity and content review, and this stage also allowed the identification of fundamental issues such as item ambiguity, inappropriate difficulty levels, and technical problems before wider implementation. Stage 5 (Field test) involved administering the instrument to a broader group of respondents to further examine the preliminary psychometric characteristics of the test using classical test theory (CTT).

Participants were recruited using voluntary sampling, reflecting teachers' willingness to participate in the study. The expert involved in the review stage was selected through purposive sampling, based on demonstrated expertise and extensive experience in developing and evaluating PISA-based science literacy assessments. Participants included one expert with

extensive experience in science literacy instruments, one junior high school science teacher for the one-to-one evaluation, eight science teachers for the small-group trial, and twelve science teachers for the field test.

The scientific literacy instrument was developed in alignment with the PISA 2025 Science Framework, integrating content knowledge, scientific competencies, and context. In accordance with the framework, the instrument addressed three types of scientific knowledge: content knowledge, procedural knowledge, and epistemic knowledge (OECD, 2023c). Items were embedded within a variety of real-world stimuli and situated across three science contexts: personal, local/national, and global. The application of science and technology was organized around five thematic areas: health and disease, natural resources, environmental quality (including climate change), hazards, and the frontiers of science and technology. All five areas were represented in the instrument, with contextual variation across items to reflect the breadth of scientific literacy as defined in the PISA framework.

Experts reviewed each item using a 5-point scale (1 = very poor to 5 = excellent) across four aspects: content, construction, language, and norms. A Mean Expert Score (MES) was calculated for each item using the formula:

$$MES = \left(\frac{\sum \text{score of all aspects}}{\text{number of aspects}} \right) \quad (1)$$

Items with $MES < 3.5$ were major revised. In the one-to-one phase, a teacher completed the instrument and evaluated its readability using a 7-aspect checklist (e.g., clarity of instructions, wording, and illustrations) on a 5-point scale. A Mean Readability Score (MRS) was calculated as:

$$MRS = \left(\frac{\sum \text{score Accros 7 aspects}}{7} \right) \quad (2)$$

Items with $MRS < 4.0$ were revised for clarity and accessibility. Additional qualitative feedback was used to guide revisions.

The small-group trial tested the revised instrument with eight teachers to examine its practicality and clarity under classroom-like conditions. Participants provided written feedback that was used to refine the final version. Data analysis combined quantitative and qualitative approaches. Quantitative analysis applied MES and MRS to evaluate item quality and readability, while qualitative analysis involved coding open-ended responses using Miles and Huberman's model (data reduction, display, and conclusion drawing). This combination ensured both technical validity and

practical usability of the instrument before its application in the second year of research.

The instrument was administered to twelve junior high school science teachers in a small-group trial. Responses were scored dichotomously (1 = correct, 0 = incorrect). In addition to qualitative feedback, classical test theory (CTT) analyses were conducted to examine the preliminary psychometric characteristics of the items. Item-level analyses included: validity (given the limited sample size, the results were interpreted cautiously and used to identify items requiring revision rather than to establish definitive construct validity); reliability, estimated using the Kuder-Richardson Formula 20 (KR-20); difficulty index (p); and discrimination index (D).

Result and Discussion

The instrument was developed with reference to the science literacy framework outlined in OECD documents informing the PISA 2025 cycle (OECD, 2023), particularly regarding the integration of content knowledge, scientific competencies, and contextual application. This forward-looking alignment was intended to support teachers' professional readiness by familiarizing them with emerging directions of international science assessments and the evolving expectations of scientific literacy beyond current classroom practices.

The instrument consists of two main components: a stimulus and a set of questions. This structure follows the guidelines of the Center for Educational Assessment (Pusmendik, 2019), which state that one principle in developing instruments for higher-order thinking skills is the inclusion of a stimulus (Pusmendik, 2019). A stimulus functions as a medium to encourage thinking and may take the form of text, images, scenarios, tables, graphs, discourse, dialogue, videos, or problems. According to Pusmendik (2019), the stimulus should be educational, broaden knowledge and insight, provide a positive message for behavioral improvement, and inspire those working on the instrument. An example is presented in Figure 2, which uses a procedural infographic to explain the mechanism of how vaccines work. This stimulus not only educates about the process of antibody formation in the body but also conveys a positive message regarding public awareness of the importance of vaccination.

For example, the vaccine stimulus addressed content knowledge related to immune response, procedural knowledge through interpretation of explanatory diagrams, and epistemic knowledge by requiring justification of scientific claims about vaccine effectiveness. The stimulus was situated in a personal context and targeted competencies related to explaining

phenomena scientifically and evaluating scientific information for decision-making.

Source: <https://www.bbc.com/news/world-49766350>

Figure 2. Example of a stimulus illustrating the mechanism of vaccine action, designed to be educational and to convey a positive message about the importance of vaccination

The developed stimuli were followed by accompanying questions. Each stimulus was linked to 3-4 questions, presented in a range of formats including multiple-choice, complex multiple-choice, categorical (true-false), and matching or sequencing. The distribution of question formats is presented in Table 1. Both the stimuli and the questions were constructed with reference to the PISA 2025 science framework, encompassing content knowledge, scientific competencies, and context, while the overall composition of questions was limited to the mapping shown in Table 2.

Table 1. Composition of Question Formats

Question Format	Number of Items
Multiple choice	7
Complex multiple choice: multiple answers	5
Complex multiple choice: categorical	4
Matching	2
Sequencing	3
Short answer	2
Essay	2
Total	25 items

Based on Table 1, the most frequently developed question type is multiple choice. This format was prioritized because Indonesian teachers are generally more familiar with multiple-choice items, which are widely used, relatively easy to construct, and commonly encountered in examinations (Alam & Kamela, 2022; Rezeki & Lubis, 2022). Such familiarity also helps minimize technical errors in question construction. Nevertheless, other question formats were included to ensure that the level of cognitive demand could be

aligned with the scientific literacy competencies that served as the basis for question development.

The framework was operationalized by mapping items across content knowledge, procedural knowledge,

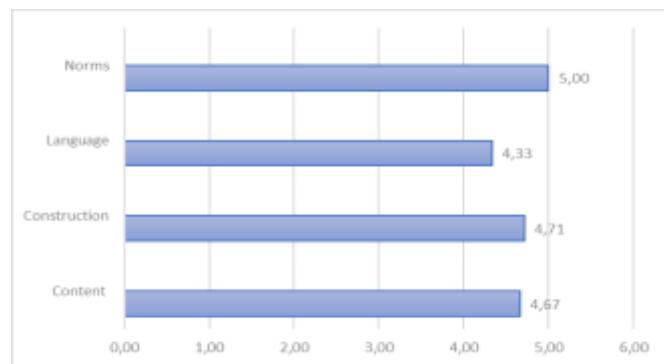
and epistemic knowledge, as well as personal, local/national, and global contexts. Questions were developed to cover all five areas, with contextual variation across the items.

Table 2. Composition of Content Knowledge, Scientific Competencies, and Context in the Developed Scientific Literacy Instrument

Competencies	Explain phenomena scientifically			Construct and evaluate designs for scientific enquiry and interpret scientific data and evidence critically			Research, evaluate, and use scientific information for decision making and action		
Context	Personal	Local/national	Global	Personal	Local/national	Global	Personal	Local/national	Global
Health & Disease	Vaccination			Food security	Vaccination		Food security	Vaccination	Food security
Natural Resources	Types of personal food and energy	Renewable energy sources		Types of personal food and energy					Renewable energy sources
Environmental Impacts & Climate Change					Waste management				Waste management
Hazards	Lifestyle/behavior risks	Rapid changes (earthquakes, severe weather)		Lifestyle/behavior risks	Rapid changes (earthquakes, severe weather)		Lifestyle/behavior risks	Rapid changes (earthquakes, severe weather)	
Contemporary Scientific and Technological Advances and Challenges		Use of new technology			Use of new technology			Use of new technology	

A crucial component in developing questions is the use of stimuli. In this study, nine stimuli were created as the basis for 25 questions. The topics included how vaccines work in the body, global food security maps, LiDAR technology for identifying regional conditions, frozen rice innovations for diets, renewable energy use in Indonesia, waste production in Yogyakarta, air quality in Yogyakarta, sedentary lifestyle, and natural disasters in Indonesia. The selection and design of these stimuli were guided by the content knowledge, scientific competencies, and contexts outlined in the PISA 2025 science framework.

One example is the stimulus on vaccines. The idea was adapted from the PISA 2025 framework (OECD, 2023c), which addresses issues in the personal context such as health, accidents, nutrition, vaccination, material consumption, food types, and personal energy. The focus of the vaccine stimulus was on explaining the mechanism by which vaccines build antibodies in the


body, rather than on national or global vaccination data. From this stimulus, several questions were developed for instance, explaining how vaccines help prevent influenza, identifying appropriate statements to weigh risks and benefits of vaccination, and justifying research that evaluates vaccine effectiveness in protecting against viral exposure. These questions were designed to reach the level of decision-making based on scientific arguments, reflecting current challenges such as public hesitancy about vaccination.

Another stimulus addresses food security in a global context (OECD, 2023c). In the PISA framework, global issues include pandemics, food security, healthy lifestyles, renewable and non-renewable energy sources, natural systems, and related themes. The stimulus was presented as a map showing populations in different countries that cannot afford healthy food (Department of Economic and Social Affairs, United Nations). From this stimulus, questions were developed to assess skills

in summarizing data and identifying strategies for policy-making in nutrition intervention programs aimed at reducing non-communicable diseases. The map was also combined with climate data from several countries to show how environmental conditions influence food security. Other stimuli were similarly developed based on the PISA framework while also considering current societal issues.

Instrument Content Validity

The quality of the instrument items in representing content knowledge, scientific competencies, and the context of scientific literacy was first evaluated through expert review. In addition to content, the experts also assessed construction, language, and norms. The results of this evaluation are presented in Figure 3.

Figure 3. Expert validation scores of the instrument items

Based on the diagram in Figure 3, the instrument achieved the maximum score of 5.00 in the norms aspect, indicating very good quality. The developed stimuli and questions did not include content related to ethnicity, religion, race, and intergroup relations, nor did they contain elements that could advantage or disadvantage particular groups. They also avoided references to politics, pornography, commercial product or agency promotions, violence, or other content with potentially negative effects.

For the language aspect, the instrument obtained a score of 4.33, categorized as good. The stimuli and questions were written in accordance with Indonesian language rules and were generally communicative. However, some foreign terms still appeared in the stimulus questions; these require attention and should be translated, especially when they involve general terms (see Figure 4).

The construction aspect received a score of 4.71, also in the good category. Items were formulated clearly, aligned with the content, context, and competencies being measured, and did not provide unintended clues to the correct answer. Illustrations and other supporting elements were clear and functional, and item responses were not dependent on one another. Revisions were

made to strengthen the independence of questions so that no item provided hints for another. The clarity and functionality of illustrations also need further attention, particularly regarding size, color, and the meaningfulness of visual information. Color gradation was noted as a sensitive issue; for example, images with similar colors (Figure 4) have the potential to cause subjective interpretations by respondents.

Figure 4. Example of an infographic stimulus that presents general information in a foreign language and uses color gradations, which may cause ambiguity in interpretation

In terms of content, the score obtained was 4.67. The quality of this aspect relates to the accuracy, currency, and clarity of the stimulus, as well as the ability of the questions to measure literacy skills and provide correct or workable answers. The question format can strongly influence this. For instance, multiple-choice multiple-answer items or categorical true/false items can become subjective if the statements involve habits, general knowledge, or facts that are widely recognized as true but are not included in the stimulus. Such cases may cause debate about which answer is correct. In the developed instrument, one true/false item contained a statement that could reasonably be categorized as “true” but could also be seen as “false” since it was not explicitly supported by the stimulus. This item therefore required modification.

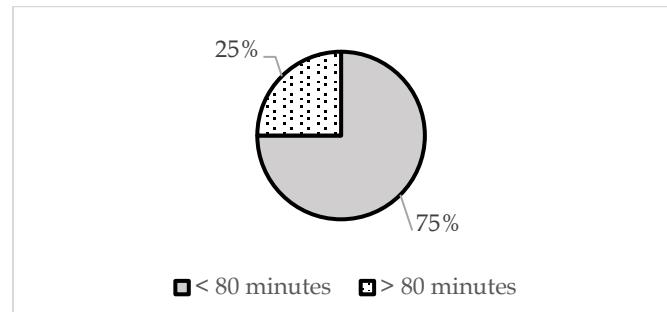
Another important factor is the effectiveness of the scientific concepts presented in the stimuli and questions. As previously noted, the stimulus is intended to provide insight, so it must include concepts that are accurate and up to date. For example, one question described LiDAR as “a system that performs remote measurement and sensing using light emissions that can be operated by drones.” This description was not scientifically precise and needed revision.

When the four aspects were combined, the average expert validation score was calculated as shown in Equation (3):

$$MES = \left(\frac{70}{15} \right) = 4.67 \quad (3)$$

Overall, the expert content validation score was 4.67, which falls into the "good" category. The experts concluded that the questions were suitable for use with only minor revisions. Alongside the expert assessment of the instrument, a readability review was conducted by junior high school science teachers through one to one focus group discussions. The readability assessment covered several aspects: clarity of instructions, clarity of the purpose of the stimulus and questions, the quality of sentences in the stimulus and questions (which needed to be communicative and free of ambiguity), the comprehensibility of illustrations such as pictures, tables, and diagrams, and the likelihood that the questions could be answered. The readability score given by the teachers was calculated using formula (2) and produced the following result:

$$MRS = \left(\frac{30}{7} \right) = 4.29 \quad (4)$$


The score in Equation (4) shows that the questions had a good level of readability. The teachers suggested adding punctuation guidelines to the instructions to help in completing the questions, since a variety of formats were included in the instrument. They also recommended adding information to the stimulus to indicate the number of questions that could be answered from each stimulus. This suggestion was reasonable, as the practice of linking one stimulus to 3–4 questions is more common in language tests. The teachers' final suggestion was similar to the experts': improving the clarity of images in the stimuli (see Figure 2). The combined input from experts and teachers was used as a guide for refining the questions.

Instrument Quality Based on Teacher Responses in a Small Test

After being evaluated by experts and junior high school science teachers in the one-on-one stage, the scientific literacy instrument was revised and then tested in the next phase, a small-group trial. Eight teachers completed the 25 questions and provided feedback. The percentage of time spent on the questions is presented in Figure 5.

This instrument was designed to be completed within a maximum of 80 minutes, equivalent to two periods of junior high school science lessons in Indonesia. As shown in Figure 5, most teachers were able to finish the instrument in less than 80 minutes. This indicates that the instrument is time-efficient and can be implemented as planned. It also suggests that teachers

were able to use the time to think through the questions with minimal technical difficulties. As previously noted, the small-group participants were heterogeneous, involving teachers from various districts in the Yogyakarta region. The majority (75%) completed the instrument within the target time, indicating that it is feasible for use by teachers across diverse contexts in the Special Region of Yogyakarta. Nevertheless, several items were considered highly difficult and required longer time to complete (8 out of 25 items). The composition of difficult and time-consuming items, based on teacher responses, is presented in Table 3.

Figure 5. Percentage of time spent by junior high school science teachers in completing the scientific literacy instrument

Table 3 shows that the content most frequently identified as difficult was health and disease, both in personal and global contexts. At the personal level, the stimulus used concerned how vaccines work. Vaccination is familiar to Indonesians because it is mandatory for the public, especially for toddlers. However, the microscopic mechanism of how vaccines function in the human body was not easily understood by respondents.

Preliminary psychometric analyses were conducted using classical test theory based on a field test with 12 junior high school science teachers. Item validity, examined through corrected item-total correlations, showed that 3 of 25 items (12%) exhibited relatively strong associations with the total test score ($r = 0.67-0.72$), while the remaining items showed correlation coefficients close to zero or varying in magnitude. Two items (8%) could not be estimated because all respondents selected incorrect options, resulting in zero variance. These patterns provide early evidence of how teachers engaged with context-based scientific literacy items and reflect the cognitive and contextual demands involved in integrating scientific knowledge, competencies, and real-world situations.

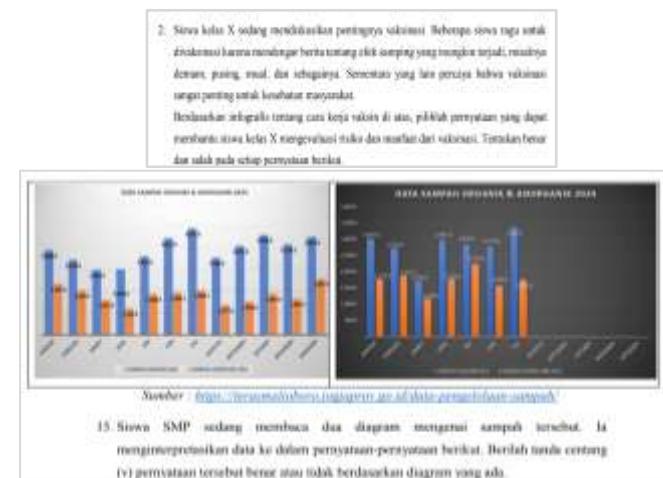
Instrument reliability was estimated using the KR-20 coefficient, yielding a value of -0.73 in the present pilot sample and interpreted as preliminary psychometric evidence. Analysis of item difficulty

indicated that 8 items (32%) were classified as easy ($p > 0.70$), 10 items (40%) as moderate ($0.30 \leq p \leq 0.70$), and 7 items (28%) as difficult ($p < 0.30$), including two items with $p = 0$. Item discrimination analysis showed that 1 item (4%) had a discrimination index of $D \geq 0.40$, 21

items (84%) had discrimination indices between $D = 0.00$ and 0.39, and 3 items (12%) yielded negative discrimination indices, indicating reversed response patterns between higher- and lower-scoring respondents.

Table 3. Items Considered Difficult and Time-Consuming by Teachers

Number	Content	Question Format	Competency	Context	Stimulus
1	Health & Disease	Multiple Choice, Multiple Answer	C1	Personal	How Vaccine Work
2*	Health & Disease	Categorical	C3	Personal	How Vaccine Work
5	Health & Disease	Multiple Choice, Multiple Answer	C1	Global	The state of food security and nutrition
9	Scientific and Technological Advances & Challenges	Multiple Choice	C3	Local	Drone Technology for Identifying Regional Conditions
14	Natural Resources	Sequencing	C3	Local	Utilization of Renewable Energy in Indonesia
15*	Environmental Impacts	Categorical	C2	Local	Waste Data in Yogyakarta
21	Hazards	Multiple Choice	C2	Personal	Sedentary Lifestyle
22	Hazards	Multiple Choice	C3	Personal	Sedentary Lifestyle


*Items with a high frequency of being identified as difficult and requiring more time to complete.

Overall, the psychometric findings are positioned as exploratory and formative, consistent with pilot testing in design-based instrument development. Rather than supporting final claims of measurement quality, the results offer empirically grounded insights into item behaviour, contextual load, and response variability among science teachers. These findings inform targeted item revision and provide a reflective foundation for subsequent large-scale testing aimed at strengthening the robustness of scientific literacy assessments for teachers.

Teachers reported difficulties across a range of question types, including multiple-choice, multiple-answer, categorical, and sequencing items. This indicates that, although multiple-choice questions are widely used and familiar to teachers, they are not necessarily easy to complete. In terms of scientific literacy competencies, 50% of the difficult items involved the ability to research, evaluate, and use scientific information for decision-making and action. With respect to context, teachers struggled with items in personal, local, and global contexts, although the personal context appeared most challenging. This suggests that, despite its direct connection to everyday life, personal issues relating to individuals are not yet fully understood comprehensively.

Of the eight items considered difficult and time-consuming, two (items 2 and 15) were reported with the highest frequency (Figure 6). Although they differed in content, competency, context, and stimulus, they shared the same question format: categorical. Category questions consist of several statements for which respondents must decide whether each statement is true

or false. Viewed through Bloom's taxonomy, this format requires higher-order thinking skills, particularly evaluation.

Figure 6. Examples of two scientific literacy items (on vaccination and waste management) that teachers reported as difficult and requiring more time to complete

The goal of science education is not simply to prepare a small group of students to become future scientists. As Wieman (2007) notes, what is needed is a society with strong scientific literacy to meet the global challenges humanity now faces. These challenges can only be understood—and potentially addressed—by using science as a foundation for informed decision-making (Roy et al., 2025; Tasquier et al., 2022). For this reason, sustainability-oriented science has become a priority. The present study emphasizes that developing questions with a sustainability orientation is essential, as

this provides direction for planning teacher competency development to meet such challenges. Integrating science and society within the framework of sustainable development is therefore fundamental (Sjöström, 2024; Wieman, 2007), ensuring that science is seen as more than a set of concepts, facts, or laws.

One characteristic of PISA science questions is their holistic content, which integrates different fields within science (biology, physics, chemistry) as well as the relationship between science, technology, and society. The context of science learning should not be limited to classroom situations but should also connect to the knowledge and experiences already familiar to 15-year-olds. It must be relevant to their interests and directly linked to everyday life (OECD, 2023b). For this reason, the issues highlighted include health and disease, natural resources, environmental quality (including environmental impacts and climate change), hazards, and the scientific and technological advances (including contemporary advances and challenges).

Developing literacy questions therefore requires careful attention to integrated content so that both teachers and students are trained to solve problems in complex situations. Integrated science bridges the natural and life sciences, supporting deeper and more comprehensive understanding of concepts and their applications (Kelp et al., 2023). However, one major barrier to integration is the division of expertise among junior high school teachers. Interviews with teachers involved in the small-group test revealed that their specialized backgrounds in biology, physics, or chemistry limited their ability to develop holistic, cross-disciplinary competencies. Teachers trained in a single discipline often find it difficult to implement interdisciplinary learning, mainly due to a lack of experience and insufficient guidance on how to integrate different fields (Tonnetti & Lentillon-Kaestner, 2023; Tripp & Shortlidge, 2019).

Sustainability-related science issues also call for the use of integrative concepts. However, an analysis of environmental education textbooks shows that the materials commonly used by teachers and students remain largely content-oriented (Eliyawati et al., 2022). This suggests a need for teachers to strengthen their ability to update their understanding of contextual issues and to independently construct integrative networks of scientific concepts. Findings from the focus group discussions indicated that, after working with the scientific literacy instrument, teachers were able to identify topics and issues relevant to everyday life. They also reported broader insights into scientific concepts and recognized that science is not limited to personal concerns but is connected to global challenges.

The instrument component measuring the ability to research, evaluate, and use scientific information for

decision-making and action was still found to be difficult by teachers. This suggests that teachers themselves continue to face difficulties in integrating theory with practice (Roy et al., 2025). Another challenge is the use of digital tools: limited skills in operating complex software contribute to suboptimal digital literacy, which in turn constrains teachers' ability to assess accurate scientific information for decision-making (Rasimin et al., 2024). For this reason, instrument development needs to maintain a balanced proportion across competencies to ensure that scientific literacy is assessed holistically.

This study also has limitations in the instrument testing stage. The developed instrument has not yet been fully examined for reliability and validity through statistical analysis, as it has only reached the small-group testing phase. This stage focused on collecting qualitative feedback to obtain initial insights into item clarity and usability. Field trials that enable more comprehensive quantitative testing therefore remain a priority for future research.

Conclusion

This study successfully developed a scientific literacy instrument for junior high school teachers. The construction of the instrument was designed in accordance with the PISA framework, taking into account the aspects of context, content, and scientific literacy competencies. The literacy questions used contexts close to real life and required reasoning skills to solve, differing from routine questions that are procedural and not contextual. Validation results showed an MES score of 4.67 in the good category, while the readability aspect obtained an MRS score of 4.29, also in the good category. Teacher responses further confirmed that this instrument can measure teachers' scientific literacy, accommodate reasoning, and inspire the introduction of topics related to current real-world problems. Preliminary psychometric analysis from the pilot test ($N = 12$) showed that 12% of items demonstrated strong item-total correlations ($r = 0.67-0.72$), the KR-20 coefficient was -0.73 , item difficulty was distributed across easy (32%), moderate (40%), and difficult (28%) categories, and item discrimination indices ranged from negative values to $D \geq 0.40$, providing formative evidence for item revision. The novelty of this study lies in its focus on in-service junior high school teachers, unlike most previous studies which concentrated on students or pre-service teacher candidates. The initial trial through a small-group test indicated that the instrument can provide qualitative insights useful for further refinement, although the study has not yet reached the stage of field testing or predictive and longitudinal reliability and validity

analysis. Thus, this research contributes theoretically by enriching the understanding of scientific literacy from the perspective of teachers, while also providing a practical assessment instrument with potential to support the professional development of science teachers.

Acknowledgments

The authors would like to express their sincere gratitude to validator, for the valuable contribution in this research. Special thanks are also extended to the junior high school teachers in Yogyakarta who participated in the one-to-one sessions and the small group test, as well as to the Science Subject Teacher Working Group (MGMP IPA) of the Yogyakarta Special Region (DIY) for their support in data collection and constructive discussions.

Author Contributions

Kintan Limiansih: Conceptualization; methodology; formal analysis; investigation; resources; data curation; writing original draft preparation; visualization; supervision; project administration; funding acquisition. Albertus Hariwangsa Panuluh: Conceptualization; methodology; investigation; writing, review and editing; translation; instrument development. Niluh Sulistyani: Validation; writing, review and editing; strengthening the introduction; instrument development. All authors have read and approved the published version of the manuscript.

Funding

This research was funded by the Institute for Research and Community Service (LPPM), Universitas Sanata Dharma, under the internal research grant scheme with contract No: 016 Penel./LPPM-USD/Iy2025.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. All procedures in this study were conducted in accordance with the ethical standards of educational research. The researchers obtained permission from the Provincial Education Office of Yogyakarta as well as from the five respective District Education Offices. Participation of respondents was voluntary, informed consent was ensured, opportunities for clarification were provided, and the confidentiality of all respondent data was strictly maintained.

References

Aryani, S., Novia, H., & Setiawan, A. (2024). Development and Analysis Validation Instrument Critical Thinking Heat Concept (CTHT) Using Rash Model. *Jurnal Penelitian Pendidikan IPA*, 10(7), 3731-3738.
<https://doi.org/10.29303/jppipa.v10i7.7727>

Coppi, M., Fialho, I., & Cid, M. (2023). Developing a Scientific Literacy Assessment Instrument for Portuguese 3rd Cycle Students. *Education Sciences*, 13(9). <https://doi.org/10.3390/educsci13090941>

Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). *Effective Teacher Professional Development*. Retrieved from <https://learningpolicyinstitute.org/product/teacher-prof-dev>.

Darman, D. R., Suhandi, A., Kaniawati, I., Samsudin, A., & Wibowo, F. C. (2024). Development and Validation of Scientific Inquiry Literacy Instrument (SILI) Using Rasch Measurement Model. *Education Sciences*, 14(3). <https://doi.org/10.3390/educsci14030322>

Eliyawati, E., Widodo, A., Kaniawati, I., & Fujii, H. (2022). Education For Sustainable Development (ESD) In Students' Textbooks. In *Journal of Engineering Science and Technology Special Issue on ICMSCE2022*. Retrieved from <https://www.ipcc.ch/report/ar4/wg1/>

Eliyawati, Widodo, A., Kaniawati, I., & Fujii, H. (2023). The Development and Validation of an Instrument for Assessing Science Teacher Competency to Teach ESD. *Sustainability (Switzerland)*, 15(4). <https://doi.org/10.3390/su15043276>

Faisal, S., Rusilowati, A., & Susilaningsih, E. (2023). Science Literacy Assessment Instrument for Additives and Addictive Substances: Development, Validation, and Rasch Model Analysis. *Jurnal Penelitian Pendidikan IPA*, 9(10), 7826-7836.
<https://doi.org/10.29303/jppipa.v9i10.4376>

Fe Bustamante, M. O., & EMercado, R. (2024). Professional Development And Scientific Literacy In Science Curriculum. *Sci-Int. (Lahore)*, 36(6), 417-422. Retrieved from <https://scint.com/pdf/638715227225281132.pdf>

Habibi, H., & Suparman, S. (2020). Literasi Matematika dalam Menyambut PISA 2021 Berdasarkan Kecakapan Abad 21. *JKPM (Jurnal Kajian Pendidikan Matematika)*, 6(1), 57-64. Retrieved from <http://journal.lppmunindra.ac.id/index.php/jkpm>

Hartina, L., Rosidin, U., & Suyatna, A. (2020). Pengaruh Penerapan Instrumen Performance Assessment pada Pembelajaran IPA Berbasis Laboratorium Real terhadap Hasil Belajar Siswa. *Jurnal Penelitian Pendidikan IPA*, 6(1), 25-31.
<https://doi.org/10.29303/jppipa.v6i1.299>

Hasasihyah, S. H., Hutomo, B. A., Subali, B., & Marwoto, P. (2020). Analisis Kemampuan Literasi Sains Siswa SMP pada Materi Sirkulasi Darah. *Jurnal Penelitian Pendidikan IPA*, 6(1), 5-9.
<https://doi.org/10.29303/jppipa.v6i1.193>

Hidayah, N., Rusilowati, A., & Masturi, M. (2019). Analisis profil kemampuan literasi sains siswa

SMP/MTs di Kabupaten Pati. *Phenomenon: Jurnal Pendidikan MIPA*, 9(1), 36-47. <https://doi.org/10.21580/phen.2019.9.1.3601>

Hung, C. S., & Wu, H. K. (2024). High school science teachers' assessment literacy for inquiry-based science instruction. *International Journal of Science Education*, 46(7), 621-642. <https://doi.org/10.1080/09500693.2023.2251657>

Hurian Kamela, R. S. A. (2022). Public Teacher Recruitment And Selection In Indonesia: A Legal Perspective. *Scientia Business Law Review (SBLR)*, 1(1), 37-43. <https://doi.org/10.56282/sblr.v1i1.51>

Jamaluddin, J., Jufri, A. W., Ramdani, A., & Azizah, A. (2019). Profil Literasi Sains Dan Keterampilan Berpikir Kritis Pendidik IPA SMP. *Jurnal Penelitian Pendidikan IPA*, 5(1). <https://doi.org/10.29303/jppipa.v5i1.185>

Kelp, N. C., McCartney, M., Sarvary, M. A., Shaffer, J. F., & Wolyniak, M. J. (2023). Developing Science Literacy in Students and Society: Theory, Research, and Practice. *Journal of Microbiology & Biology Education*, 24(2). <https://doi.org/10.1128/jmbe.00058-23>

Kioupi, V., & Voulvoulis, N. (2019). Education for sustainable development: A systemic framework for connecting the SDGs to educational outcomes. *Sustainability (Switzerland)*, 11(21). <https://doi.org/10.3390/su11216104>

Limiansih, K., Sulistyani, N., & Melissa, M. M. (2024). Persepsi Guru SMP terhadap Literasi Sains dan Implikasinya pada Pembelajaran Sains di Sekolah. *Jurnal Pendidikan Mipa*, 14(3), 786-796. <https://doi.org/10.37630/jpm.v14i3.1858>

Mckay, V. (2018). Literacy, lifelong learning and sustainable development. *Australian Journal of Adult Learning*, 58(3), 390-425. Retrieved from <https://search.informit.org/doi/abs/10.3316/informit.069488054638414>

McKenney, S., & Reeves, T. C. (2025). Educational design research for relevant & robust scholarship. *Journal of Computing in Higher Education*, 37(2), 614-638. <https://doi.org/10.1007/s12528-025-09456-2>

Mulyana, V., & Desnita, D. (2023). Empirical Validity and Reliability of the Scientific Literacy Assessment Instrument Based on the Tornado Physics Enrichment Book. *Jurnal Penelitian Pendidikan IPA*, 9(5), 3961-3967. <https://doi.org/10.29303/jppipa.v9i5.3290>

OECD. (2023a). *Education at a Glance 2023 (Education at a Glance)*. OECD Publishing. <https://doi.org/10.1787/e13bef63-en>

OECD. (2023b). *PISA 2022 Results (Volume I): The State of Learning and Equity in Education*. OECD. <https://doi.org/10.1787/53f23881-en>

OECD. (2023c). *PISA 2025 Science Framework (Draft)*. Retrieved from <https://pisa-framework.oecd.org/science-2025/>

Osborne, J., & Allchin, D. (2024). Science literacy in the twenty-first century: informed trust and the competent outsider. *International Journal of Science Education*. <https://doi.org/10.1080/09500693.2024.2331980>

Parenta, Y., Masykuri, M., & Saputro, S. (2022). Literature Study: Application of PBL-STEM on Simple Machine Topic to Improve Critical Thinking Skills. *Jurnal Penelitian Pendidikan IPA*, 8(2), 674-680. <https://doi.org/10.29303/jppipa.v8i2.1181>

Rahmadani, Y., Fitakurahmah, N., Fungky, N., Prihatin, R., Majid, Q., & Prayitno, B. A. (2018). Profil Keterampilan Literasi Sains Siswa di Salah Satu Sekolah Swasta di Karanganyar. *Jurnal Pendidikan Biologi*, 7(3), 183-190. <https://doi.org/10.24114/jpb.v7i3.10123>

Rasimin, Semma, A. B., Zakiyuddin, Ali, M., & Helmy, M. I. (2024). Multi-dimensional challenges in the Indonesian social science information technology-based learning: A systematic literature review. *Heliyon*, 10(7). <https://doi.org/10.1016/j.heliyon.2024.e28706>

Roy, G., Sikder, S., & Danaia, L. (2025). Adopting scientific literacy in early years from empirical studies on formal education: a systematic review of the literature. In *International Journal of STEM Education* (Vol. 12, Issue 1). Springer Science and Business Media Deutschland GmbH. <https://doi.org/10.1186/s40594-025-00547-1>

Sæleset, J., & Friedrichsen, P. (2021). Pre-service Science Teachers' Pedagogical Content Knowledge Integration of Students' Understanding in Science and Instructional Strategies. *Eurasia Journal of Mathematics, Science and Technology Education*, 17(5), 1-18. <https://doi.org/10.29333/ejmste/10859>

Schenk, L., Hamza, K., Arvanitis, L., Lundegård, I., Wojcik, A., & Haglund, K. (2021). Socioscientific Issues in Science Education: An opportunity to Incorporate Education about Risk and Risk Analysis? *Risk Analysis*, 41(12), 2209-2219. <https://doi.org/10.1111/risa.13737>

Sjöström, J. (2024). Vision III of scientific literacy and science education: an alternative vision for science education emphasising the ethico-socio-political and relational-existential. In *Studies in Science Education*. Routledge. <https://doi.org/10.1080/03057267.2024.2405229>

Rezeki, S. K., & Lubis, F. (2022). *Analisis Soal Buatan Guru Bahasa Indonesia Berdasarkan Taksonomi The Structure Of The Observed Learning Outcome (Solo) Siswa Kelas XI SMA Negeri 12 Medan Tahun*

Pembelajaran 2020/2021 (Vol. 11, Issue 1). Retrieved from <http://ejurnal.uika-bogor.ac.id/index.php/TEK>

Suwono, H., Maulidia, L., Saefi, M., Kusairi, S., & Yuenyong, C. (2022). The Development and Validation of an Instrument of Prospective Science Teachers' Perceptions of Scientific Literacy. *Eurasia Journal of Mathematics, Science and Technology Education*, 18(1). <https://doi.org/10.29333/EJMSTE/11505>

Tasquier, G., Knain, E., & Jornet, A. (2022). Scientific Literacies for Change Making: Equipping the Young to Tackle Current Societal Challenges. *Frontiers in Education*, 7. <https://doi.org/10.3389/feduc.2022.689329>

Tessmer, M. (2005). *Planning and Conducting Formative Evaluations: Improving the Quality of Education and Training*. Routledge.

Tonnetti, B., & Lentillon-Kaestner, V. (2023). Teaching interdisciplinarity in secondary school: A systematic review. In *Cogent Education* (Vol. 10, Issue 1). Taylor and Francis Ltd. <https://doi.org/10.1080/2331186X.2023.2216038>

Tripp, B., & Shortlidge, E. E. (2019). A framework to guide undergraduate education in interdisciplinary science. *CBE Life Sciences Education*, 18(2). <https://doi.org/10.1187/cbe.18-11-0226>

United Nations. (2025). *The Sustainable Development Goals Report*. Retrieved from <https://unstats.un.org/sdgs>

Widiatmo, T., Jufri, A. W., & Jamaluddin, J. (2019). Analysis of Validation of Instruments to Measure Student's Critical Thinking Ability and Science Literation. *Jurnal Penelitian Pendidikan IPA*, 5(2), 212–218. <https://doi.org/10.29303/jppipa.v5i2.272>

Wieman, C. (2007). Why Not Try a Scientific Approach to Science Education. *The Magazine of Higher Learning*, 9–15. <https://doi.org/10.3200/CHNG.39.5.9-15>

Yusmar, F., & Fadilah, R. E. (2023). Analisis Rendahnya Literasi Sains Peserta Didik Indonesia: Hasil PISA Dan Faktor Penyebab. *LENZA (Lentera Sains): Jurnal Pendidikan IPA*, 13(1), 11–19. <https://doi.org/10.24929/lensa.v13i1.283>