

E3S Web of Conferences

E3S Web of Conferences

eISSN: 2267-1242

Volume 687 (2026)

By using this website, you agree that EDP Sciences may store web audience measurement cookies and, on some pages, cookies from social networks.
[More information and setup](#)

E3S Web of Conferences Journals Books Conferences [EDPS Account](#) [Web of Conferences](#)

E3S Web of Conferences All issues Series Forthcoming About [Search](#) [Menu](#)

All issues > Volume 687 (2026)

◀ Previous issue [Table of Contents](#)

[Free Access to the whole issue](#)

E3S Web of Conferences
Volume 687 (2026)

The 2nd International Conference on Applied Sciences and Smart Technologies (InCASST 2025)

Yogyakarta, Indonesia, October 15, 2025
P. Uthansakul, I.M.W. Ekaputra and D. Widjaja (Eds.)

Export the citation of the selected articles [Export](#)
Select all

Open Access
About the conference
Published online: 15 January 2026
PDF (279 KB)

Open Access
Statement of Peer review
Published online: 15 January 2026
PDF (477 KB)

▼ Environmental Developments & Sustainable Systems ▼ Green Technologies & Digital Society

E3S Web of Conferences

https://www.e3s-conferences.org/articles/e3sconf/abs/2026/05/contents/contents.html

By using this website, you agree that EDP Sciences may store web audience measurement cookies and, on some pages, cookies from social networks.

More information and setup

Open Access

Preface 00001
Peerapong Uthansakul, I Made Wicaksana Ekaputra and Damar Widjaja
Published online: 15 January 2026
DOI: <https://doi.org/10.1051/e3sconf/202668700001>
Abstract | PDF (108.1 KB)

Environmental Developments & Sustainable Systems

Open Access

Preliminary Techno-Economic Analysis of Wind Power Plant Development in Central Java 01001
Saul A. Alokabel and M.N. Setiawan
Published online: 15 January 2026
DOI: <https://doi.org/10.1051/e3sconf/202668701001>
Abstract | PDF (529.7 KB) | References

Open Access

Water Quality Prediction using LSTM: A Deep Learning Approach at Wat Makhram Station, Chao Phraya River, Thailand 01002
Nugroho Budi Wicaksono, Sukma Meganova Effendi, Dechrit Maneetham and Padma Nyoman Crisnapti
Published online: 15 January 2026
DOI: <https://doi.org/10.1051/e3sconf/202668701002>

E3S Web of Conferences

https://www.e3s-conferences.org/articles/e3sconf/abs/2026/05/contents/contents.html

By using this website, you agree that EDP Sciences may store web audience measurement cookies and, on some pages, cookies from social networks.

More information and setup

Open Access

Faiz Nur Fauzi, Dendy Satrio and Ristiyantri Adiputra
Published online: 15 January 2026
DOI: <https://doi.org/10.1051/e3sconf/202668701010>
Abstract | PDF (866.1 KB) | References

Open Access

The Influence of Ocean Thermal Energy Conversion System Efficiency on Net Power Output 01011
Navik Puryantini, Dendy Satrio, Ristiyantri Adiputra and Silvianita
Published online: 15 January 2026
DOI: <https://doi.org/10.1051/e3sconf/202668701011>
Abstract | PDF (756.7 KB) | References

Open Access

Automation of moisture level measurement in charcoal briquettes 01012
Muda Vincentius Hosea Pniel, Harini Bernadeta Wuri, Sambada Rusdi and Prasetyadi Andreas
Published online: 15 January 2026
DOI: <https://doi.org/10.1051/e3sconf/202668701012>
Abstract | PDF (1.124 MB) | References

Open Access

Energy Efficient Random Search in Euclidean Space using Lévy Flight 01013
Nara Narwandaru, Jordan Vincent and Bambang Soelistijanto

Automation of moisture level measurement in charcoal briquettes

DOI: <https://doi.org/10.1051/e3sconf/202668701012>

Scientific Committee

- Prof. Hideki Kuwahara, Ph.D. (Sophia University, Japan)
- Prof. Dr. Willy Susilo ((Wollongong University, Australia)
- Prof. Dr. rer. nat. Herry Pribawanto Suryawan (Universitas Sanata Dharma - Indonesia)
- Prof. Ir. Sudi Mungkasi, Ph.D. (Universitas Sanata Dharma - Indonesia)
- Prof. Bambang Soelistijanto, Ph.D. (Universitas Sanata Dharma - Indonesia)
- Prof. Dr. Ir. Feri Yusivar, M.Eng. (Universitas Indonesia, Indonesia)
- Prof. Dr. Eng. Ir. Deendarlianto, S.T., M.Eng. (Gadjah Mada University, Indonesia)
- Dr. Uday Pandit Khot (St. Francis Institute of Technology, University of Mumbai, India)
- Dr. Farah Suraya Md Nasrudin (Universiti Teknologi MARA, Malaysia)
- Assoc. Prof. Dr. Shi Bai (Florida Atlantic University, U.S)
- Parkpoom Phetpradap, Ph.D. (Chiang Mai University, Thailand)
- Tri Hieu Le, Ph.D. (Ho Chi Minh University of Technology (HUTECH), Vietnam)
- Alex Baenaorama, Ph.D. (St. Paul University Dumaguete, Philipine)
- Ignasia Handipta Mahardika, Ph.D. (Sogang University, South Korea)
- Dr. Irma Saraswati, M.Sc. (Universitas Sultan Ageng Tirtayasa, Indonesia)
- Dr. Imamul Muttakin (Universitas Sultan Ageng Tirtayasa, Indonesia)
- Dyonisius Dony Ariananda, S.T., M.Sc., Ph.D. (Gadjah Mada University, Indonesia)
- Dr. I Gusti Ngurah Bagus Catravewarma, S.T., M.Eng. (Politeknik Negeri Banyuwangi, Indonesia)

Steering Committee

- Chairperson: Ir. Drs. Haris Sriwindono, M.Kom., Ph.D. (Universitas Sanata Dharma - Indonesia)
- Member:
 - Dr. Ir. I Gusti Ketut Puja (Universitas Sanata Dharma - Indonesia)
 - Prof. Dr. Frans Susilo, S.J. (Universitas Sanata Dharma - Indonesia)
 - Dr. Ir. Bernadeta Wuri Harini (Universitas Sanata Dharma - Indonesia)
 - Prof. Dr. Ir. Anastasia Rita Widiarti (Universitas Sanata Dharma - Indonesia)
 - Dr. Lusia Krismiyati Budiasih (Universitas Sanata Dharma - Indonesia)

Organizing Committee

- Chairman: Dr. Ir. Achilleus Hermawan Astyanto (Universitas Sanata Dharma - Indonesia)
- Member:
 - Dr. Sri Hartati Wijono, M.Kom. (Universitas Sanata Dharma - Indonesia)
 - Ir. Kartono Pinaryanto, S.T., M.Cs. (Universitas Sanata Dharma - Indonesia)
 - Regina Chelinia Erianda Putri, M.T. (Universitas Sanata Dharma - Indonesia)
 - Ir. Rosalia Arum Kumalasanti, M.T. (Universitas Sanata Dharma - Indonesia)
 - Michael Seen, M.Eng. (Universitas Sanata Dharma - Indonesia)
 - Ir. Robertus Adi Nugroho, M.Eng. (Universitas Sanata Dharma - Indonesia)
 - Eduardus Hardika Sandy Atmaja, Ph.D. (Universitas Sanata Dharma - Indonesia)
 - Gilang Arga Dyaksa, M.Eng. (Universitas Sanata Dharma - Indonesia)
 - Heryoga Winarbawa, M.Eng. (Universitas Sanata Dharma - Indonesia)

Editors

- Prof. Peerapong Uthansakul, Ph.D. (Suranaree University of Technology - Thailand)
- Assoc. Prof. Dr. Eng. Ir. I Made Wicaksana Ekaputra (Universitas Sanata Dharma - Indonesia)
- Assoc. Prof. Ir. Damar Widjaja, Ph.D. (Universitas Sanata Dharma - Indonesia)

Innovating for Sustainability: Digitalization, Green Energy, and Achieving Energy Independence for a Greener Future

Yogyakarta, 15 October 2025 (Hybrid)

KEYNOTE SPEAKERS

 Prof. Dr. Thomas Götz
 University of Koblenz,
 Germany

 Prof. Dr. Kavita Sonawane
 SFIT, University of Mumbai,
 India

 Ishak H.P. Tnunay, Ph.D.
 Beehive Drones, PT. Aerotek
 Global Inovasi, Indonesia

 Andreas Prasetyadi, Ph.D.
 Universitas Sanata Dharma,
 Indonesia

Call for Papers

SCOPES

Environmental Developments

- Environmental impact assessment and management
- Waste management and recycling
- Environmental biotechnology and microbiology
- Carbon capture and sequestration

Green Technologies

- Renewable energy technologies and systems
- Climate change and global warming
- Sustainable agriculture and land use practices
- Clean energy
- Energy Efficiency
- Water-Energy Nexus
- Green Materials

Digital Society

- IoT and AI-based sustainability solutions
- Data analysis and predictive modeling for environmental sustainability
- Sustainable transportation and mobility solutions
- Data and distributing computing

IMPORTANT DATES

• Early bird registration deadline	: 14 July 2025
• Full paper submission deadline	: 29 Aug 2025
• Acceptance notification	: 12 Sept 2025
• Late registration deadline	: 15 Sept 2025
• Conference day	: 15 Oct 2025

CONTACT PERSON

 Eduardus Hardika Sandy Atmaja, Ph.D. +62 895 3817 54488
 Dr. Sri Hartati Wijono, M.Kom. +62 811 2646 471

Scan here

Co Hosted by

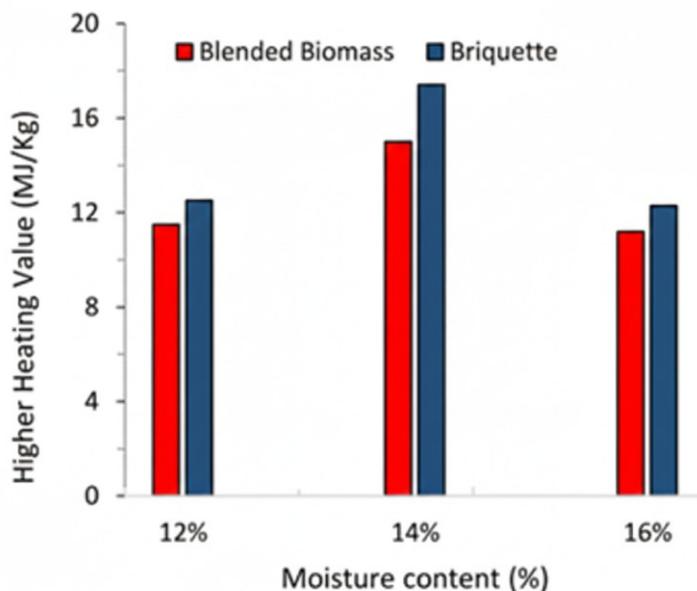
Sponsored by

Published by

Automation of moisture level measurement in charcoal briquettes

Muda Vincentius Hosea Pniel¹, Harini Bernadeta Wuri¹, Sambada Rusdi², and Prasetyadi Andreas^{2}*

¹Sanata Dharma University, Electrical Engineering Department, 55281, Sleman, Indonesia


²Sanata Dharma University, Mechanical Engineering Department, 55281, Sleman, Indonesia

Abstract. Charcoal briquettes, made from organic waste. Their quality depends significantly on moisture content, which affects electrical conductivity. This study focuses on automating moisture measurement using electrical resistance. The device employs a current-sensing circuit, an analog-to-digital converter, Hall effect sensors, and servo-driven clamps with plate-shaped electrodes to grip briquettes and measure resistance. Briquettes are fed into the system by a rotary feeder. Testing on batches of 10 briquettes classified as dry, half-dry, and wet showed classification success rates of 100% for either dry or wet conditions and 55.6% for half-dry conditions, despite occasional errors from resistance values outside predefined ranges. Resistance ranges recorded were 11.38–15.80 MΩ (dry), 3.37–7.59 MΩ (half-dry), and 0.02–0.80 MΩ (wet), corresponding to moisture contents of 0–3.03%, 7.27–11.52%, and 11.52–16.36%, respectively. The half-dry resistance values were closer to the wet range, indicating the half-dry batches were not distinctly intermediate between dry and wet. The rotary feeder showed practical reliability with 88% success for loading briquettes into chambers and 77.5% for positioning them on the measurement table, enabling effective automation. Overall, the system demonstrated the capability to measure moisture content and classify briquettes by dryness.

1 Introduction

The world seeks sustainable renewable energy sources to replace fossil fuels. One option is charcoal briquettes, made by crushing biomass wastes like paddy stalks, husks, rice hulls, and coconut shells into powder, mixing with a binder, shaping, and drying. Briquetting raises the energy-to-mass ratio of low-value biomass waste. Quality indicators include ignition and burning times. Briquette readiness depends on moisture content at the end of drying, which also influences ignition, burning duration, and Higher Heating Value (HHV) in a non-linear way, as shown in Figure 1 [1], [2], [3].

*Corresponding author: pras@usd.ac.id

Fig. 1. Higher Heating Value of charcoal briquettes in relation to moisture content [4].

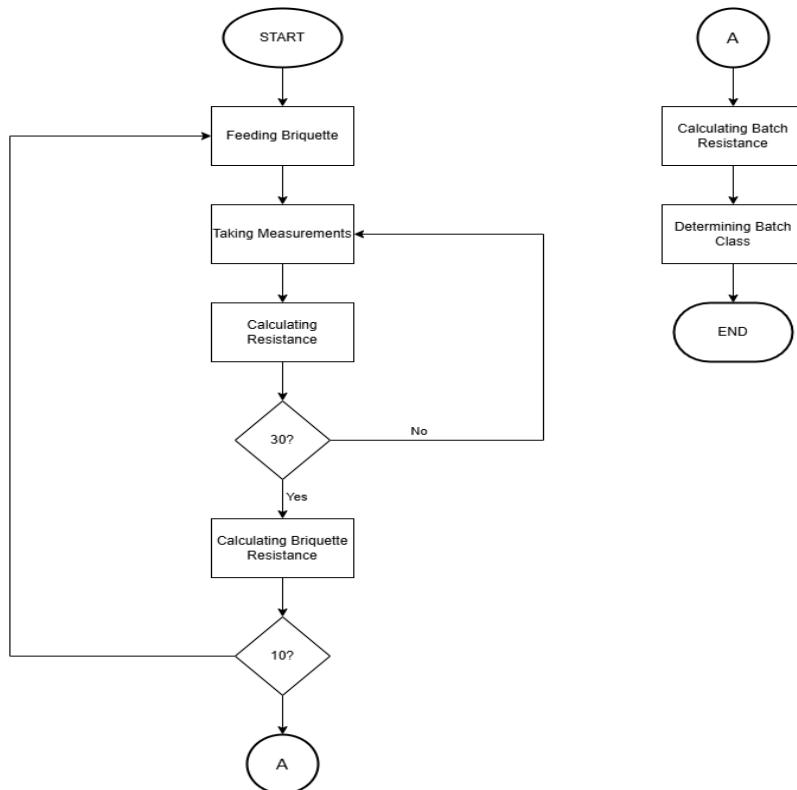

Previous research found that moisture content affects briquette resistance measured by conventional ohm-meter probing as depicted in Table 1, with half-dry batches having the highest resistance and wet batches the lowest, guiding resistance-based classification ranges. Manual measurement risks human errors, so developing an automated robotic resistance measurement system aims to improve accuracy and efficiency by minimizing human involvement. The study goal is to build this automatic moisture measurement system for charcoal briquettes [5], [6], [7].

Table 1. Measurement results from the previous study [5].

Condition	Probe Placement			Unit
	RL	RH	RS	
Wet	151,10	101,75	63,14	kΩ
Half Dry	9,08	6,62	5,82	MΩ
Dry	7,61	6,2	5,33	MΩ

2 Methods

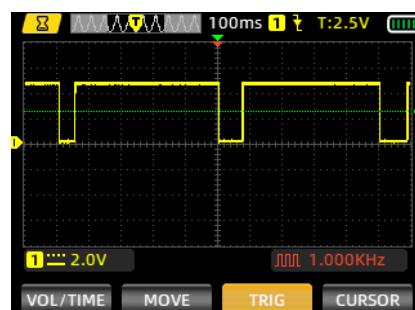

The automatic moisture level measurement system consists of two main systems. These systems are the feeding system and the measurement system. The feeding system's role is to ensure the briquettes enter the measurement process in one by one or in sequence, while the measurement system's role is to take electrical measurements of the fed charcoal briquette. Together, they form an automatic moisture level measurement system. The simplified flowchart of the whole system is shown in Figure 2.

Fig. 2. General flowchart of the automatic moisture level measurement system.

2.1 Feeding System

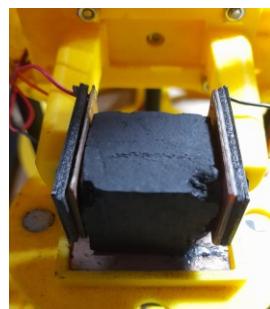
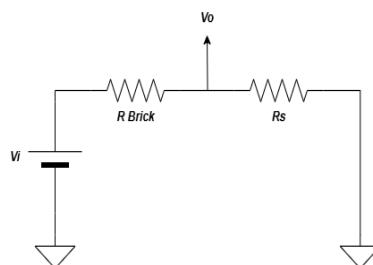

The feeding system uses a rotary feeder to deliver briquettes one by one from a rectangular magazine attached with a slide-lock. The feeder has a static rail guiding the briquettes and a rotating part that pushes them clockwise to an outlet leading to the measurement device. It employs an S49E Hall effect sensor, MG996 servo, and PCA9685 controller to detect and control the rotating part's position. Magnets on each feeder chamber generate a magnetic field sensed by the Hall sensor, providing feedback to the microcontroller to stop the servo rotation via interrupts, as shown in Figure 3 [8], [9], [10], [11].

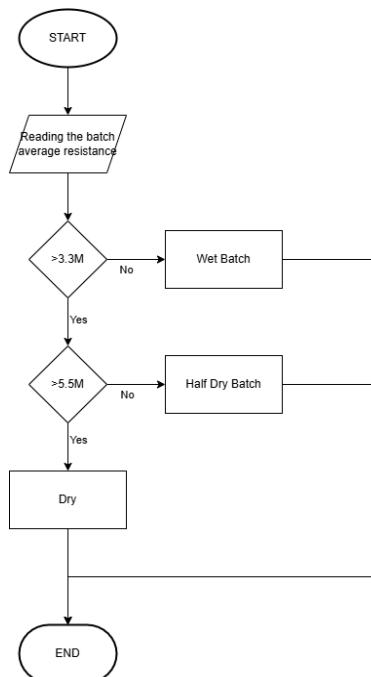
Fig. 3. Signal from the Hall effect sensor seen using oscilloscope.


2.2 Measurement System

Moisture level measurement of charcoal briquettes is done by estimating the resistance value of a briquette batch through electric current passed between the briquette and a fixed current sense resistor via plate-shaped electrodes, as shown in Figure 4. These plates contact opposite surfaces of the briquette using a clamping mechanism driven by a servo motor attached to a rack and pinion gear system. The electrodes and resistor form an open-loop circuit that completes into a voltage divider when the briquette is present. The simplified voltage divider circuit is shown in Figure 5. The voltage across the briquette and current sense resistor is sensed by an analog-to-digital converter, which converts the analog voltage into digital data. This data is then transmitted via I2C protocol to the microcontroller for collection and processing [13], [14], [15].

Fig. 4. Measurement system gripper mechanism.

Data from the measurement device is used to calculate charcoal briquette resistance as in (1), where R_s is the current sense resistor. Each briquette's resistance is averaged from 30 measurements, and averages from ten briquettes form the batch resistance. The wet and dry batch weights are measured to calculate relative moisture content using (2), based on the “green based”, where $MC_{relative}$ equals the weight difference between the sample W_n and driest briquette W_{driest} divided by the heaviest briquette weight $W_{wettest}$. Average resistance and moisture content are compared to verify results.


Fig. 5. Voltage divider circuit of the measurement system.

$$R_{brick} = R_s \times \left(\frac{V_i}{V_o} - 1 \right) \quad (1)$$

$$MC_{relative} = \frac{W_n - W_{driest}}{W_{wettest}} \times 100\% \quad (2)$$

2.3 Classification Method

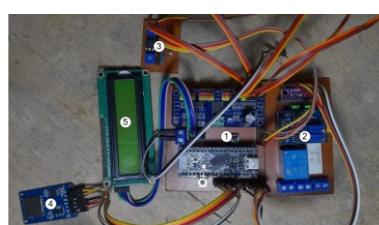

Classification of the charcoal briquette's moisture level is done by using three simple if-else statements shown in Figure 6. The three classification ranges are obtained by doing trial and error process by testing charcoal briquettes conditioned in the three conditions. It is done by sampling about 10 times of each dry and wet batch for the dry and wet threshold and then the middle range selected between the dry and wet value. The conditioning process is done by drying under the sun for the "dry" condition and submerging into tap water for about a minute for the "wet" condition. A dry batch is a batch of ten sun-dried charcoal briquettes. A wet batch is a batch of ten wet charcoal briquettes. The half-dry batch condition is achieved by constructing a batch of each five dry and wet charcoal briquettes.

Fig. 6. Classification flowchart of the automatic moisture level measurement system.

2.4 Implementations

The system is implemented as follows, the electronics of the system shown and explained in Figure 7 and explained in Table 2 while the mechanics of the system shown and explained in Table 3. The interface of the system shown and explained in Table 4.

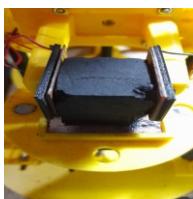
Fig. 7. Electronics of the automatic moisture level measurement system.

Table 2. Details of the electronic modules of the automatic moisture level measurement system.

Part Num.	Name of Part	Description
1	Control Module	Controls the whole system and processing collected data.
2	Measurement Module	Measuring the voltage induced by the current sense resistor.
3	Hall Effect Sensor	Detects magnetic field for controller position feedback.
4	Storage Module	Stores measurement data including the classification results.
5	I2C LCD Module	Shows the data and system informations.

Table 3. Details of the mechanical system of the automatic moisture level measurement system.

Device Picture	Part	Num.	Description
	Rotary Feeder	1	The Static part which acts as rail or guide for the charcoal briquettes.
		2	The dynamic part which moves in rotating clockwise motion.
	Measurement System	3	The gripper of the measurement system which physically clamps the briquette to enable measurement.


Table 4. Details of the interface of the automatic moisture level measurement system.

Interface	Num.	Description
	1	ON/OFF switch used to cut or connect the power supply to the system.
	2	RESET button used to do total restart of the whole system.
	3	START button used to start the measurement sequence session.

The step-by-step operation of the system after the start button is pressed is shown in the Table 5. Initially, it will prepare the system, then take measurements after the system is initialized. If the process runs properly, the measurements taken will be stored on an SD card storage device. The system can handle undetected charcoal briquettes by nudging, with the assumption that the charcoal briquette is jammed at the feeding system's outlet.

Table 5. Operation sequence of the automatic moisture level measurement system.

Num.	Process Name	System	Description
1	Cleaning up the measuring table		Ejecting the objects on the table by tilting the table's servo motor.
2	Calibrating the measurement system		Touching the probes to create a short-circuit to obtain the offset value.
3	Filling the chambers		Moving the rotary feeding system to fill the rotary feeder's chambers.
4	Briquette feeding		Pushing a charcoal briquette into the measuring table.
5	Charcoal briquette existence checking		Checking the charcoal briquette existence by closing the electrodes until a certain threshold voltage that indicates briquette is sensed.

Num.	Process Name	System	Description
6-a	Measuring table flicking		Flicking the charcoal briquette forward to make sure that the briquette is parallel on any sides.
6-b	Nudging		Nudging the rotary feeder to push charcoal briquette that might be stuck. This step is done when step 6-a is not completed.
6-c	Abnormal system stop		Stopping the whole operation if step 6-a is not completed for 5 times in a row.
7	Resistance measurement		Measuring the resistance value of a charcoal briquette.
10	Measuring table clean up		Ejecting the charcoal briquette after measurements are done.
11	Normal system stop		Calculating and classifying the average resistance value of a charcoal briquette batch.

3 Results and Discussion

The automatic moisture measurement system consists of three main steps: feeding briquettes from the magazine into the system, measuring their resistance, and classifying the resistance values into three categories.

3.1 Mechanics

The mechanics of the automatic moisture level measurement system can deliver charcoal briquettes into the measuring table with a success rate of about 77.5% while 88% of the briquettes in the magazine are successfully inserted into the chambers. This success rate is calculated based on how many briquettes can complete the process without being stuck or thrown off the system. Table 6 shows the success in-out count of charcoal briquettes.

Table 6. In-out count of the charcoal briquette moisture level measurement system.

Num.	Into The Chambers	Into The Measurement System
1	7	5
2	9	8
3	10	8
4	9	5
5	8	8
6	9	6
7	8	7
8	10	8
9	9	7
10	9	6

3.2 Measurements

Measurements on three charcoal briquette batches with three iterations each are shown in Tables 7–9. Figure **Error! Reference source not found.** illustrate an inverse relationship between resistance and moisture content: lower moisture yields higher resistance. The first measurements show good linearity across batches, but non-linearity appears in later ones, especially in Batch 1, likely due to imperfect conditions like briquette dryness, electrode dirt, and contact issues. Differences from a previous manual study are attributed to electrode shape: the prior study used needle-shaped electrodes that focus current on a small area, resulting in lower resistance and different linearity compared to the plate-shaped electrodes used here.

Table 7. Batch weight of charcoal briquettes in the three conditions.

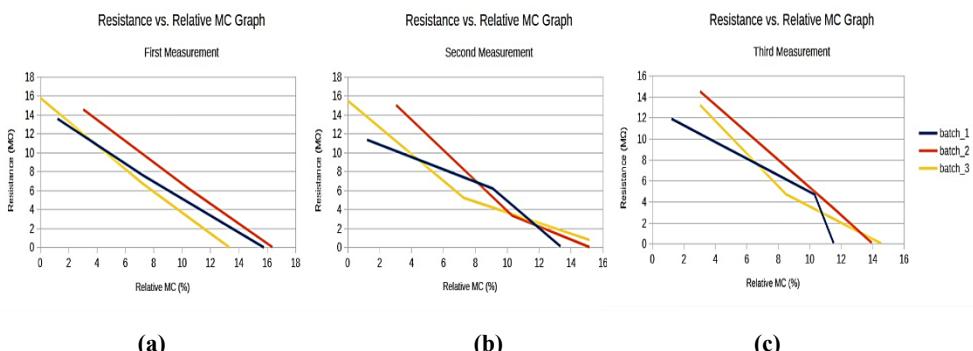

Batch	<i>i</i>	Batch Weight (g)		
		Dry	Half-Dry	Wet
1	1	14.00	15.00	16.40
	2	14.00	15.30	16.00
	3	14.00	15.50	15.70
2	1	14.30	15.50	16.50
	2	14.30	15.50	16.30
	3	14.30	15.70	16.10
3	1	13.80	15.00	16.00
	2	13.80	15.00	16.30
	3	14.30	15.20	16.20
Average		14,09	15,3	16,17

Table 8. Relative moisture content of the charcoal briquettes.

Batch	<i>i</i>	MC (%)		
		Dry	Half-Dry	Wet
1	1	1.21	7.27	15.76
	2	1.21	9.09	13.33
	3	1.21	10.3	11.52
2	1	3.03	10.3	16.36
	2	3.03	10.3	15.15
	3	3.03	11.52	13.94
3	1	0	7.27	13.33
	2	0	7.27	15.15
	3	3.03	8.48	14.55
Average		1,75	9,09	14,34

Table 9. Average resistance value of charcoal briquettes in three conditions.

Batch	<i>i</i>	Resistance Value (MΩ)		
		Dry	Half-Dry	Wet
1	1	13.61	7.59	0.02
	2	11.38	6.22	0.12
	3	11.92	4.73	0.08
2	1	14.59	6.40	0.05
	2	15.05	3.37	0.04
	3	14.53	3.40	0.11
3	1	15.80	6.69	0.02
	2	15.51	5.24	0.80
	3	13.22	4.74	0.05
Average		13,96	5,38	0,14

Fig. 8. First moisture content vs. resistance graph (a) First moisture (b) Second moisture (c) Third moisture.

3.3 Classification

Classification testing was conducted by measuring resistance values of batches containing ten charcoal briquettes under three conditions, using program-defined classification ranges. The system achieved 100% success in classifying dry and wet batches but only 55.6% for half-dry batches, with occasional errors due to average resistance values falling outside the defined ranges. After data collection, resistance ranges were established as 11.38–15.80 MΩ for dry, 3.37–7.59 MΩ for half-dry, and 0.02–0.80 MΩ for wet conditions, corresponding to relative moisture contents of 0–3.03%, 7.27–11.52%, and 11.52–16.36%, respectively.

The data also revealed that the half-dry resistance range is closer to the wet range and less aligned with the dry range. This suggests that the half-dry briquettes tested were not distinctly intermediate between dry and wet, indicating that the classification labelled as half-dry may represent batches more similar to wet conditions than truly in between.

4 Conclusion

This study confirms that the automatic charcoal briquette moisture measurement system effectively gauges moisture levels by analyzing resistance values, with success rates of 100% for dry and wet conditions, and 55.6% for half-dry. Resistance ranges clearly correlate with moisture content, though half-dry values are closer to wet, indicating less distinct intermediates. The rotating feeder system proved reliable, with 88% success in loading and 77.5% in positioning briquettes. Overall, the system demonstrates practical accuracy for industrial applications, with potential for future enhancements like improved feeders, machine learning classification, and supplementary sensors for comprehensive quality control.

This study provides additional proof that the moisture content of charcoal briquettes significantly influences their resistance value, which can be measured using a resistance divider-based current sensing circuit. The experimental results clearly show a strong correlation between moisture levels and resistance, underscoring the importance of precise measurement techniques for quality control and performance evaluation. Furthermore, the research demonstrates that complete automation of the measurement process is feasible through the integration of a rotary feeder and a gripping mechanism, enhancing the consistency, repeatability, and efficiency of measurements, making the system suitable for industrial applications. This work lays a solid foundation for future studies aimed at developing improved feeder designs and instrument configurations to achieve greater accuracy and reliability. Additionally, there is considerable potential for exploring advanced classification methods, including machine learning models, to better fit and interpret the collected data. Future research could also expand the capabilities of the measurement system by incorporating complementary sensors, such as built-in weighing scales for mass monitoring or surface area estimation tools to assess physical briquette characteristics, thereby enabling a more comprehensive evaluation. These enhancements would contribute to improved product quality, process optimization, and sustainability in charcoal briquette manufacturing and use.

References

1. M. Njenga, *Charcoal Briquette Production*, vol. **1**. (2014).
2. U. S. P. R. Arachchige, “Briquettes Production as an Alternative Fuel,” *Nat. Environ. Pollut. Technol.*, vol. **20**, no. 4, page 1661–1668, (2021), doi: 10.46488/NEPT.2021.v20i04.029.

3. S. N. F. S. Adam, J. H. M. Aiman, F. Zainuddin, dan Y. Hamdan, “Processing and Characterisation of Charcoal Briquettes Made from Waste Rice Straw as A Renewable Energy Alternative,” *J. Phys. Conf. Ser.*, vol. **2080**, no. 1, (2021), doi: 10.1088/1742-6596/2080/1/012014.
4. A. A. H. Saeed *et al.*, “Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste,” *Sustain.*, vol. **13**, no. 6, (2021), doi: 10.3390/su13063069.
5. A. Prasetyadi, R. Sambada, dan P. K. Purwadi, “Development of A New Fast Drying Determinant Method Using Resistivity for The Industry of Coconut Shell Charcoal Briquettes,” *Eastern-European J. Enterp. Technol.*, vol. **127**, no. 6, (2024).
6. C. Deepika, K. Taj, dan P. Bedar, “Automation in Production Systems : Enhancing Efficiency and Reducing Costs in Mechanical Engineering,” vol. **5**, no. 5, page 1436–1447, (2024).
7. A. V. Bataev dan I. S. Davydov, “The Role of Automation in Improving the Quality of Enterprise Business Processes,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. **986**, no. 1, (2020), doi: 10.1088/1757-899X/986/1/012015.
8. M. Vineeth, M. Arun, C. D. Abinandan, dan G. Sundarraj, “Introduction to Feeding Systems,” *Int. Res. J. Eng. Technol.*, vol. **6**, no. 3, page 8067–8069, (2019), doi: 10.1016/b978-0-408-10134-9.50024-8.
9. S. Autsou, K. Kudelina, T. Vaimann, A. Rassõlkin, dan A. Kallaste, “Principles and Methods of Servomotor Control: Comparative Analysis and Applications,” *Appl. Sci.*, vol. **14**, no. 6, (2024), doi: 10.3390/app14062579.
10. A. S. Sadun, J. Jalani, dan J. A. Sukor, “A Comparative Study on The Position Control Method of DC Servo Motor with Position Feedback by Using Arduino,” *ARPN J. Eng. Appl. Sci.*, vol. **11**, no. 18, page 10954–10958, (2016).
11. JAMIESON DA, “Hall Effect,” *Contr Instrum*, vol. **2**, no. 1, page 23–24, (1970). doi: 10.1038/240494a0.
12. M. S. Ics, “SS39ET / SS49E / SS59ET Series Datasheet”
13. H. Eren, “Current Measurement,” in *Handbook of Measuring System Design*, 1 ed., no. March 2005, P. H. Sydenham dan R. Thorn, Ed., Chichester: Wiley, 202, page 1363–1370, (2005). doi: 10.1002/0471497398.mm320.
14. A. Note, “Using Current Sense Resistors for Accurate Current Measurement”.
15. B. W. Harini, R. Sambada, V. H. P. Muda, dan A. Prasetyadi, “Dryness Level Measurement of Coconut Shell Charcoal Briquettes using Plate-shaped Electrodes,” vol. **2025**, page 1–9, (2025). doi: 10.11594/nstp.2025.5101.