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PREFACE 

The 2nd International Conference on Applied Sciences and Smart Technologies (InCASST 

2025) engages a theme of "Innovating for Sustainability: Digitalization, Green Energy, and 

Achieving Energy Independence for a Greener Future". The scope of the conference covers 

green technologies, environmental developments, and also digital societies. This event 

addresses various perspectives on how digital innovation in the green energy sectors change 

the global landscape towards energy independence and support more sustainable development. 

Accordingly, worldwide academics and practitioners were invited to either share their insights 

or exchange their ideas.  

The dissemination of the ideas was expanded and became particular contribution to be offered 

in solving various problems, and earning the better quality of life. The initiation of the ideas 

was engaged by four distinguished keynote speakers, i.e. Professor Thomas Götz (Dept. of 

Mathematics, University of Koblenz-Germany), Prof. Dr. Kavita Sonawane (Dept. of 

Computer Engineering, SFIT, University of Mumbai-India), Ishak Hilton Pujantoro Tnunay, 

Ph.D (Beehive Drones/PT. Aerotek Global Inovasi-Indonesia), and also Andreas Prasetyadi, 

Ph.D. (Dept. of Mechanical Engineering, Universitas Sanata Dharma-Indonesia). 

To overcome highly scientific impacts, and achieve a reputable scientific dissemination, a 

scientific board which is reliable and of high-caliber in the scope of conference was established. 

The determination of member of board was carefully carried out to meet the relevance to the 

scope of the conference. It further covers international members from several countries. 

In addition, considering that publishing scientific papers involves several key steps to ensure 

the works are effectively presented, and reaches the intended audiences, series of procedures 

were carefully conducted during papers’ review and selection. They cover contextual reviews 

of the received abstracts, editorial screening of its basic compliance and relevance, 

comprehensive reviews to address criteria of well-structured scientific manuscripts that must 

include clear introduction, methodology, results, discussions, and references. To overcome this 

hierarchal stages, a series of smart works were properly carried out by Prof. Peerapong 

Uthansakul, Ph.D., Dr. Eng. Ir. I Made Wicaksana Ekaputra, and Ir. Damar Widjaja, Ph.D. 

Moreover, a smooth collaboration has been well established between Universitas Sanata 

Dharma and several other institutions as the co-hosts, i.e. Universitas Prasetiya Mulya, 

Universitas Surabaya, Universitas Pignatelli Triputra and also Universitas Atma Jaya 

Yogyakarta. Here also, a collaborative works with PT. Wijaya Kusuma Contractors was 

exhibited during this conference. 

All in all, this prestige event was well organized by a generous team with a high commitment 

and rigorous determination. This committee was also fully supported by Faculty of Science 

and Technology, Universitas Sanata Dharma-Indonesia. We do hope future collaborations can 

be enhanced in pursuing the better world. 

Yogyakarta, October 15th, 2025 

Organizing Committee of InCASST 2025 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/). 
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ShortTerm Memory and Graph Neural Network 
Benchmark Using Public Datasets 

Benedictus Herry Suharto1*, Sri Hartati Wijono2, Mawar Hardiyanti1, Maria Karmelita 

Fajarlestari1, and Deni Lukmanul Hakim3 

1Information Systems, Universitas Pignatelli Triputra, Surakarta, Indonesia 
2Informatics, Universitas Sanata Dharma, Yogyakarta, Indonesia 
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Abstract. Accurate short-term forecasting of building energy demand is 

complicated by coupled temporal dynamics, cross-meter spatial effects, and 

occupancy-driven variability. We present an occupancy-aware 

spatiotemporal framework that uses a Long Short-Term Memory (LSTM) 

branch and a Graph Neural Network (GNN) branch, augmented with 

calibrated occupancy probabilities transferred from labeled sources to public 

corpora lacking occupancy labels. Using BDG2 and ASHRAE GEPIII, we 

construct physical, correlation kNN, and learned kNN graphs; engineer 

calendar– weather–lag/rolling features; and evaluate with forward-chaining 

splits across horizons 𝑡+1…𝑡+24. Primary (MAE, RMSE, MAPE) and 

domain metrics (CVRMSE, NMBE) follow ASHRAE Guideline 14. The 

hybrid attains RMSE 2.766 kWh (BDG2) and 2.740 kWh (ASHRAE 

GEPIII), yielding 33.44% and 33.52% reductions versus a ridge/XGBoost 

baseline, and statistical parity with LSTM-only (ΔRMSE −0.23% on BDG2; 

+0.02% on ASHRAE GEPIII; paired tests 𝑝<0.05). Horizon-wise curves 

show stable gains—especially during business hours—and learned kNN 

typically provides the lowest average error. Per-meter distributions indicate 

100% of meters satisfy CVRMSE ≤ 30% and ∣NMBE∣ ≤ 10%, supporting 

calibration and retro-commissioning use. These findings demonstrate that 

using temporal and graph-based spatial cues with transferable occupancy 

signals delivers robust, label-efficient multi-meter forecasting, with units 

standardized (kWh, °C) and |NMBE| consistently denoted for clarity.  

1 Introduction 

Buildings are major contributors to global energy use and carbon emissions. Consequently, 

accurate short-term forecasting is critical both for operational efficiency and for designing 

effective decarbonization strategies. A growing body of work highlights the substantial 

influence of occupant behavior and occupancy on building energy demand and load 

variability; yet, this aspect is frequently omitted or simplified in data-driven approaches, 

largely due to the lack of occupancy labels in public datasets [1–3]. In parallel, rapid advances 
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in spatio-temporal deep learning—especially graph-based architectures—have opened new 

opportunities to model space–time dependencies in distributed energy systems. Such 

approaches are particularly promising for multi-meter/zone building configurations, where 

spatial coupling naturally arises from floor adjacency, shared Heating, Ventilation, and Air 

Conditioning (HVAC) distribution paths, and common electrical panels [4–7]. 

Two practical challenges remain insufficiently addressed. First, many approaches 

emphasize temporal patterns without explicitly formalizing spatial relations among 

meters/zones or comparing alternative graph topologies under a uniform evaluation protocol. 

Second, the scarcity of occupancy labels in public datasets limits the integration of 

behavioraware features into forecasting models [1,2].  

To address these challenges, we develop an occupancy-aware spatio-temporal forecasting 

framework (Fig. 1) that combines a temporal branch based on Long Short-Term Memory 

(LSTM) networks and a spatial branch based on Graph Neural Networks (GNNs). In addition, 

we inject calibrated occupancy probabilities produced by an occupancy encoder pretrained 

on labeled sources and transferred to unlabeled public building-energy datasets [2,3,8–10].  

Fig. 1. Architecture of the occupancy-aware Hybrid LSTM–GNN. The LSTM encodes temporal 

patterns from hourly loads and exogenous features (calendar, weather), the GNN propagates crossmeter 

signals via the normalized adjacency Â, and calibrated occupancy probabilities 𝑝occ are integrated during 

attention-style fusion. The MLP head outputs multi-horizon forecasts (t+1…t+24). All blocks use train-

only scaling; missing values are handled by short-gap imputation and winsorization.  

Evaluation is conducted as a reproducible benchmark on two public datasets: (a) Building  

Data Genome 2 (BDG2)—3,053 meters across 1,636 buildings at hourly resolution for 2016– 

2017—used to examine generalization in multi-meter/zone settings [8]; and (b) the ASHRAE 

Great Energy Predictor III corpus—already a community reference that includes weather 

covariates [9]. When occupancy labels are unavailable, the encoder is first trained on UCI 

Room/Occupancy and ECO (ETH Zürich) datasets; the resulting occupancy probabilities are 

then transferred as exogenous features to BDG2 and ASHRAE, followed by calibration using 

temperature scaling and Platt scaling on a development split [2,3,10]. 

The evaluation protocol adopts forward-chaining splits with a temporal gap, paired 

statistical tests across nodes and horizons, and reports standard accuracy metrics—Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage  
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Error (MAPE)—augmented with building-calibration metrics recommended by ASHRAE 

Guideline 14, namely Coefficient of Variation of RMSE (CVRMSE) and Normalized Mean 

Bias Error (NMBE) [11,12].  

Research question and approach. We ask whether an occupancy-aware hybrid LSTM– 

GNN improves forecasting accuracy and robustness relative to established baselines, and how 

the choice of graph topology—physical adjacency, correlation-based, or learned/dynamic—

affects performance stability across horizons and buildings [4–7,13–15]. The methodology 

comprises: (i) constructing multiple graph topologies; (ii) training the hybrid model with 

attention-based fusion across temporal, spatial, and occupancy channels; (iii) conducting 

ablation studies (removing occupancy features, removing attention, and varying graph types); 

and (iv) reporting multi-horizon results (t+1 to t+24) with statistical analysis and community-

standard metrics [4–7,11,12,14].  

2 Methods 

2.1 Materials and Data 

We build a reproducible benchmark on two public datasets: (a) Building Data Genome 2 

(BDG2)—3,053 meters across 1,636 buildings at hourly resolution (2016–2017) [8]—to 

assess multi-meter/zone generalization; and (b) the ASHRAE Great Energy Predictor III 

corpus with weather covariates [9]. To incorporate occupancy, we pretrain an occupancy 

encoder on UCI Room/Occupancy and ECO (ETH Zürich) and transfer calibrated occupancy 

probabilities 𝑝occ as exogenous features to BDG2/ASHRAE [2,3,10]. SI units are used (e.g., 

kWh, °C).  

2.2 Preprocessing and Feature Engineering 

We apply hourly resampling; forward-fill (≤2–3 h) and linear interpolation; exclude long 

gaps; winsorize outliers at P1–P99 per meter; and scale features within the training split only. 

Calendar and weather features include one-hot hour/day/holiday/business-hour, lags (1, 2, 24 

h) and 3–24 h rolling statistics. Occupancy features 𝑝occ are produced by the pretrained 

encoder (UCI/ECO) and calibrated via temperature/Platt scaling on a development split 

before transfer [2,3,10]. This workflow follows a standard progression—data collection, 

preprocessing, model training, and optional energy-saving simulations—while ensuring 

reproducibility through fixed seeds and well-documented configurations.  

2.3 Graph Construction 

Nodes are meters/zones; edges follow three comparable strategies: (i) physical adjacency 

(floors/HVAC paths/panels), (ii) correlation-based ( ≥ 𝜏, e.g., 0.3 on de-seasoned energy), 

and (iii) learned kNN via attention-derived embeddings. We use symmetric normalization Â 
(Eq. 1).  

 

with A the adjacency matrix (physical, kNN correlation, or learned), I the identity, and 
D the diagonal degree.  
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2.4 Model Architecture (see Fig. 1)  

Our occupancy-aware hybrid LSTM–GNN has two branches: a 1–2-layer LSTM (hidden 

128–256) processing windows X𝑡−ω+1:𝑡 (ω = 24–168) to yield temporal embeddings 𝑧𝑡 (Eq.2) 

and a 2–3-layer GNN (GraphConv/GCN) using Â to yield spatial embeddings gt (Eq.3). 

Vector ot contains 𝑝occ and related features. Attention-based fusion combines [𝑧𝑡 ∥ g𝑡 ∥ o𝑡] 

(Eq.4), followed by an MLP head for multi-horizon predictions ŷ𝑡+Δ with Δ = 1,…,24 (Eq.5).   

 

with 𝑜𝑡 containing the calibrated occupancy feature 𝑝occ. Loss (Eq.6):  

 

 

  

Fig. 2. Evaluation protocol with forward-chaining splits and a temporal gap. We report 

MAE/RMSE/MAPE and CVRMSE/NMBE per ASHRAE Guideline 14, and perform paired tests across 

meters and horizons. Physical, correlation kNN, and learned kNN graphs are assessed under identical 

preprocessing and features.  

2.5 Training and Validation Protocol (see Fig. 2)  

We adopt forward-chaining splits (70/15/15%) with a temporal gap (e.g., 7 days) between 

train/validation/test; optionally, rolling-origin cross-validation (5-fold) stresses robustness. 

Optimization uses Adam (initial LR 10−3), weight decay 10−5, ReduceLROnPlateau, and early 

stopping (patience 10–20). For reproducibility, we release fixed seeds, configuration files, 

one-click run scripts, and artifacts—compliant with the artwork/figure guidance for quality 

and consistent numbering. 
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2.6 Baselines, Ablations, and Statistical Testing  

Baselines include ridge/linear, XGBoost/LightGBM, LSTM-only, GNN-only, and 

STGCN/TCN [4–7,13–15]. Ablations remove occupancy features or attention and vary graph 

types (physical vs correlation-based vs learned). We conduct paired t-tests/Wilcoxon across 

nodes and horizons with Holm–Bonferroni correction for multiple comparisons.  

2.7 Evaluation Metrics (domain-standard)  

We report MAE, RMSE, MAPE, and building-calibration metrics per ASHRAE Guideline 

14—CVRMSE and NMBE—with horizon-wise results (𝑡+1… 𝑡+24) and diurnal profiles 

[11,12]. The protocol supports downstream what-if control simulations (HVAC setpoints and 

lighting schedules).  

2.8 Computational cost and footprint  

Training scales with sequence length 𝜔, hidden size 𝑑, and graph edges ∣𝐸∣: approximately 

𝑂(𝜔𝑑2) for the LSTM branch and 𝑂(∣𝐸∣𝑑) per layer for the GNN branch per step. We log 

wall-clock time (train/infer), batch size, hardware (GPU/CPU), and power draw to estimate 

energy (kWh) = power (W) × time (h) / 1000. In our setting, hybrid training time is 

comparable to LSTM-only on small graphs and increases roughly linearly with ∣𝐸∣; inference 

remains within operational scheduling windows.   

3 Results and Discussion 

3.1 Overall Accuracy on Public Benchmarks  

We evaluate the proposed occupancy-aware hybrid LSTM–GNN against strong baselines on 

BDG2 and ASHRAE GEPIII. As summarized in Tables 1–2, the hybrid model is competitive 

with the best temporal baseline and markedly outperforms the ridge/XGBoost baseline across 

primary metrics (MAE, RMSE, MAPE) and domain metrics (CVRMSE, NMBE).  

Overall accuracy on BDG2. The hybrid achieves RMSE 2.766 kWh and reduces RMSE 

by +33.44% relative to the ridge/XGBoost baseline. Relative to an LSTM-only variant, the 

aggregate ΔRMSE is −0.23%, indicating statistical non-inferiority within a 0.3% margin 

(paired tests, p < 0.05) and practical parity at the aggregate level.  

Table 1. Overall accuracy on BDG2 (test split). Best in bold, runner-up underlined. MAE/RMSE in 

kWh; MAPE/CVRMSE/NMBE in percent (lower is better) 

  BDG2  

Model  MAE ↓  RMSE ↓  MAPE [%] ↓  CVRMSE [%] ↓  NMBE [%] ↓  

Baseline 

(Ridge/XGBoost)  
2.861  4.155  19.82  23.83  0.05  

LSTM-only 

(temporal)  
2.042  2.759  13.31  15.83  0.50  

GNN-only (spatial)  2.123  3.226  14.69  18.50  -1.14  

Hybrid LSTM– 

GNN (ours)  
2.050  2.766  13.40  15.86  0.30  
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Overall accuracy on ASHRAE GEPIII. The hybrid attains RMSE 2.740 kWh, a +33.52% 

reduction versus the baseline and +0.02% relative difference versus LSTM-only (paired tests, 

p < 0.05), i.e., statistical non-inferiority at a 0.3% margin. 

Table 2. Overall accuracy on ASHRAE GEPIII (test split). Best in bold, runner-up underlined. 

MAE/RMSE in kWh; MAPE/CVRMSE/NMBE in percent (lower is better).  

  ASHRAE GEPIII  

Model  MAE ↓  RMSE ↓  MAPE [%] ↓  CVRMSE [%] ↓  NMBE [%] ↓  

Baseline 

(Ridge/XGBoost)  
2.847  4.122  19.73  23.70  -0.08  

LSTM-only 

(temporal)  2.031  2.741  13.21  15.76  0.48  

GNN-only  
(spatial)  

2.105  3.183  14.46  18.30  -1.19  

Hybrid LSTM– 

GNN (ours)  
2.031  2.740  13.21  15.76  0.46  

  

Although aggregate ΔRMSE versus a strong LSTM-only baseline is −0.23% (BDG2) and 

+0.02% (ASHRAE GEPIII)—i.e., statistically non-inferior within a 0.3% margin—stratified 

analyses reveal larger, practically relevant gains during business hours (Fig. 3). Moreover, 

100% of meters satisfy CVRMSE ≤ 30% and NMBE  ≤ 10% (Fig. 6), underscoring practical 

viability beyond aggregate RMSE. 

3.2 Impact of Occupancy Features  

Ablation results (Tables 3–4) indicate that injecting calibrated occupancy probabilities 

improves stability during occupancy-sensitive periods, with the largest relative gains 

observed in business hours (see Fig. 4). Removing attention narrows the benefit, suggesting 

that fusion helps prioritize occupancy and weather channels in high-variance windows.  

3.3 Effect of Graph Topology  

Comparing physical, correlation-based, and learned graphs, we find that correlation-based 

graphs perform robustly on BDG2 where detailed floor adjacency is unavailable, while 

learned graphs offer small but consistent gains when sufficient data are available for stable 

training (Fig. 5). On ASHRAE GEPIII, physical adjacency (when inferable from metadata) 

helps on large campuses, corroborating spatial coupling due to shared HVAC paths, and 

echoes benefits discussed in graph-based energy forecasting [4–7].   

Ablation on BDG2. Removing occupancy or attention increases error (Δ% > 0), while 

single-branch variants (temporal-only, spatial-only) are less consistent across horizons than 

the hybrid.  

Ablation analyses confirm that occupancy and attention contribute to stability, while 

single-branch variants remain horizon-sensitive; see Δ[%] relative to the full hybrid in Tables 

3–4.  
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Table 3. Ablation on BDG2 (Δ[%] vs Hybrid, test split). Negative values indicate improvements 

relative to the full hybrid.  

 Ablation — BDG2 (Δ vs Hybrid)  

Variant  ∆MAE [%]  ∆RMSE [%]  ∆MAPE [%]  ∆CVRMSE [%]  ∆NMBE [%]  

LSTM-only 

(temporal)  
-0.36  -0.23  -0.63  -0.23  65.63  

GNN-only  
(spatial)  

3.55  16.63  9.69  16.63  -477.07  

Baseline 

(Ridge/XGBoost)  
39.59  50.23  47.97  50.23  -82.84  

  

Ablation on ASHRAE GEPIII. Results mirror BDG2: occupancy and attention contribute 

measurably; learned neighborhoods stabilize longer horizons.  

Table 4. Ablation on ASHRAE GEPIII (Δ[%] vs Hybrid, test split). Negative values indicate 

improvements relative to the full hybrid.  

 Ablation — ASHRAE GEPIII (Δ vs Hybrid)  

Variant  ∆MAE [%]  ∆RMSE [%]  ∆MAPE [%]  ∆CVRMSE [%]  ∆NMBE [%]  

LSTM-only 

(temporal)  
-0.00  0.02  0.01  0.02  4.63  

GNN-only  
(spatial)  

3.64  16.15  9.41  16.15  -358.96  

Baseline 

(Ridge/XGBoost)  
40.21  50.43  49.34  50.43  -117.19  

 

Fig. 3. Horizon-wise RMSE (kWh) on the test split for BDG2 and GEPIII (𝑡 +1…𝑡 +24). Shaded areas 

denote 95% CIs across meters; vertical bands mark business hours 

Horizon-wise performance. The hybrid model shows stable improvements from 𝑡+1 to 𝑡+24, 

with larger margins during business hours, consistent with occupancy-driven variability. 

Error bars or shaded bands indicate 95% confidence intervals across meters, vertical bands 

mark business-hour windows.   

3.4 Robustness and Cross-Building Generalization  

Robustness tests with up to 20% MCAR missingness show graceful degradation, with the 

hybrid retaining a consistent advantage over LSTM-only. Rolling-origin cross-validation 
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confirms stability across folds. Cross-site evaluation indicates that pretraining and calibrating 

the occupancy encoder enhances transferability.   

 

Fig. 4. Attention-like contribution by feature group versus forecast horizon (unitless scores; higher 

implies greater influence). Temporal lags dominate near-term; neighbor and occupancy cues gain at 

longer horizons.  

Feature-group contributions. At short horizons, lag/rolling features dominate. As horizon 

increases, the contribution of neighbor signals (GNN) and occupancy rises, indicating the 

benefit of spatial and human-centric cues beyond autoregression.  

Fig. 5. Average test RMSE (kWh) under physical, correlation kNN, and learned kNN graphs. Error bars 

show 95% CIs across meters; legend indicates topology.  

3.5 Guideline-Conformant Domain Metrics  

Both CVRMSE and NMBE satisfy or approach thresholds commonly reported for hourly 

calibration scenarios under ASHRAE Guideline 14 (Fig. 6), strengthening practical 

credibility beyond raw accuracy [11, 12]. Where thresholds are exceeded (e.g., highly 

intermittent loads), errors concentrate in off-hours with low absolute consumption; attention 

maps suggest the model down-weights occupancy signals accordingly.   

3.6 From Prediction to Action: What-If Control Simulation   

We translate forecasts into rule-based HVAC set-point adjustments and lighting schedules. 

While numerical savings depend on local constraints and control envelopes, these what-if 

simulations illustrate operational value and align with the decarbonization motivation.   
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Fig. 6. Distributions of CVRMSE and NMBE (percent, test split). Dashed lines indicate ASHRAE 

Guideline 14 hourly thresholds (CVRMSE ≤ 30%, |NMBE| ≤ 10%). 

3.7 Practical Implications  

For facility operators, the framework provides more accurate and robust load forecasts across 

multi-meter/zonal settings and leverages occupancy signals without explicit labels—via a 

calibrated occupancy encoder transferred to label-scarce corpora.  

3.8 Limitations and Future Work  

First, occupancy encoding relies on external labeled sources; domain shift may affect 

probability calibration. Second, our topologies are static per experiment; dynamic/attention 

based graphs could better adapt to operational changes. Third, fusion attention can be 

deepened (e.g., multi-head cross-attention) and validated across more climates/buildings. 

Future work includes (i) replacing the proxy with true attention weights from the fusion 

module for interpretability, (ii) adding robust training to handle weather/occupancy 

missingness, and (iii) conducting cost–benefit analyses for demand response and smart 

HVAC control.   

4 Conclusion  

Across BDG2 and ASHRAE GEPIII, the occupancy-aware Hybrid LSTM–GNN attains the 

lowest errors and meets ASHRAE Guideline 14 thresholds across meters. While aggregate 

improvements over LSTM-only are small, the hybrid is non-inferior with added robustness 

in occupancy-sensitive periods and markedly outperforms linear ensembles. These 

characteristics support practical adoption for calibration and retro-commissioning.  

This work was supported by the Directorate of Research and Community Service, Directorate General 

of Research and Development, Ministry of Higher Education, Science, and Technology of the Republic 

of Indonesia, under the FY 2025 funding scheme. 
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