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Abstract. In the modern world, the artificial intelligence technology
available enables the generation of human faces of which real world
counterparts do not exist, and such potential offers a myriad of possibilities.
Creativity can illustrate and fabricate work. Granted, technology of this
nature can be wielded to serve the purpose of identity fraud, providing
misinformation and other seemingly ‘immoral’ acts. Hence, this study aims
to investigate the use of Convolutional Neural Networks (CNN) in
composite face images created with ‘This person does not exist’ and ‘real
life images’ download. Considering the study’s focus, the learning rate of
0.0001, sigmoid, 0.4 Dropout, and average pooling for tuning showed the
desired learnt outcomes. The results were astounding, the model achieved
99% accuracy on validation and 97% accuracy on the training dataset. This
accomplishment was attributed to a face’s underlying subtle features, such
as its textures, symmetry, and visual interferences. Optimisation was
conducted to measure generalisation, needing the model to perform on a new
dataset with additional smartphone images. The accuracy was 84% for
augmented and real images, with 5 outcomes correct of 6 sample images.

1 Introduction

The internet shows the long history the world has had with the evolution of technology and
the ways it alters the way we live, unto this day. From its ability to generate remarkably
realistic and professionally taken images to having sites such as '"This Person Does Not Exist,’
the internet has truly come a long way. None of this, however, exists without animating a
never-ending discourse about the consequences and underlying issues of such new
technology, which reach beyond the scope of mere critique and academia. On the one hand,
this innovation allows for new realms of entertainment, versatile digital art, and novel app
development. On the other hand, it poses the imminent risk of being misused for the purposes
of unadulterated misinformation, identity theft, and other illegal actions.

News from Hong Kong mentions the first instances of identity theft via deepfakes [1].
The degree of ease with which identity can be constructed from fake identities indeed
underscores the challenges of digital security, privacy, and information authenticity in the
contemporary online context. This prompts the areas within artificial intelligence, and within
computer science and engineering, that focus on vision and machine learning, to develop
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techniques to distinguish computer-generated faces, like those from TPNE, from real
photographs of people.

Applying a Convolutional Neural Network (CNN) framework and deep learning to
analyse the accuracy of image recognition and classification graphed within the timelines of
remains a very promising approach [2][3]. In various studies, the use of CNN methods has
been primed to tackle image detection and classification tasks [4][5][6]. Wang et al. proposed
a novel CNN detection methodology targeting both visual and ancillary artefacts that are
prevalent within Al-generated imagery [7]. Li and Lyu fused CNN deep learning methods in
conjunction with frequency analysis to elevate detection efficacies in new and novel ways
[8]. Other works have also utilised transfer learning to bolster the model's accuracy when
data is scarce [9]. Within heavily contested domains, stagnant and dynamic images are
distinguished using CNN methods pertaining to fake image detection [10][11].

The datasets used in this research are the primary hindrance as they are intricate and
varied. Images that are captured of a face differ greatly and include a plethora of parameters.
Expression, lighting, angle, and the visual field all play a part in the complexity of
constructing a working model with flexible and precise classifiers. The variance is important
because the learning model needs to trace and recall distinguishable and repetitive classifiers
to secure accuracy. In order to evaluate the effectiveness of the CNN algorithm, the study
will focus on the images captured on the smartphone itself, as these will differ substantially
from what is contained in the public domain datasets, such as those available on Kaggle or
GitHub. This is a crucial step in the evaluation of the model’s ability to operate on real-life
data, which, thanks to the model’s shortcomings, will demonstrate discrepancies in quality,
illumination, and other parameters that are absent from the model’s constructed datasets. The
inclusion of such data aims to test the model’s robustness and flexibility in realistic and
complicated situations.

This study visualises the application of a CNN-based algorithm for distinguishing
between face images from TPNE and genuine human pictures, as well as measuring the
model’s performance on different configurations of hyperparameters.

2 Material and Methods

2.1 Research Workflows

Figure 1 illustrates the research flow. The research phases start with gathering the dataset,
then move to data pre-processing to ready the images prior to training the model.
Subsequently, the Convolutional Neural Network (CNN) algorithm is employed to create and
enhance the classification model. The last phase involves assessing model performance to
determine its accuracy and reliability when encountering new data.

Data CNN .
Preprocessing | [~ Modelling Wodel Evaluation

Fig. 1. Research workflow

2.2 Data

The image data used in this study comes from three main sources. The first source is Kaggle
(www.kaggle.com/datasets/shirshaka/ai-vs-human-generated-images), which contributed
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1,000  randomly  selected  images. The  second source is  Github
(https://github.com/NVlabs/fthq-dataset), with a contribution of 6,850 images. The third
source is the This Person Does Not Exist (TPNE) website (https://thispersonnotexist.org/),
from which we obtained 9,792 images. In total, 17,711 images were collected and ready for
analysis. Some examples of images used in this study can be seen in Figures 2 to 4.

Fig. 2. Sample image data from kaggle (www.kaggle.com/datasets/shirshaka/ai-vs-human-generated-
images)

From Kaggle, 1,000 human facial images were selected and labeled as Human. These
images varied in color composition, with some being full-color and others in black and white.

Fig. 3. Sample image data from github (https:// github.com/NVlabs/fthq-dataset)

The second dataset, sourced from GitHub, comprised 6,850 full-color human facial
images, all labeled as Human.

Fig. 4. Sample image data website TPNE (https://thispersonnotexist.org/)

Facial photos sourced from the TPNE website using web scraping tools, and subsequently
labelled Fix AI, number 9,792 images. This data set covers images of synthetic faces which
were generated using artificial intelligence and more often than not using techniques referred
to as Generative Adversarial Networks (GANs). This particular technology is famous and is
widely applied in an array of sectors including motion picture, marketing, and the world of
digital entertainment as a result of its unique capability of producing images of humans that


http://www.kaggle.com/datasets/shirshaka/ai-vs-human-generated-images
http://www.kaggle.com/datasets/shirshaka/ai-vs-human-generated-images
https://github.com/NVlabs/ffhq-dataset
https://thispersonnotexist.org/

E3S Web of Conferences 687, 02010 (2026) https://doi.org/10.1051/e3sconf/202668702010
InCASST 2025

resemble real people. Although the images appear close to real photographs, Al images also
have small distinguishing characteristics, including skin texture and pattern inconsistencies,
unnatural facial features and symmetry, blurred and monotonous backgrounds, and extreme
facial feature symmetry attributed to the eyes, nose, and mouth which are rarely observed in
humans [12]. In sharp contrast, real faces are captured in images without any form of editing
and can easily be obtained from an array of sources including instant photographs captured
from a camera. These images showcase real faces with natural defects and irregularities,
characteristics of which include shapeless, disproportionate, and unsympathetically aligned
eyes, mouth, and nose. These images are also marked with real lighting, chaotic backgrounds,
and genuine expressions in contrast with the set conditions of the environment. All real face
images were properly resized and arranged to eliminate inconsistencies before being used to
model the model in this particular study.

2.3 Methodology

After gathering the image data, the next step is to prepare the data. In this case, the
ImageDataGenerator included in the Keras library in Python is used. The Keras library
streamlines the entire pre-processing phase, data augmentation in particular, burdening the
local storage is no longer an issue, as the increased data volumes are managed in the system
RAM.

The augmentation procedure consists of a set of transformation parameters identified in
other works [13] such as rescaling, rotation, the separation of the dataset used for training,
validation, and testing, and the setting of width and height. The overall purpose of these
methods is to increase the diversity of the training dataset. Normalisation is a technique used
in rescaling, which captures the essence of transforming a range of values to the range of zero
to one. In this case, the pixel values within the range of 0 and 255 will be transformed to a
range within either of these two-digit values. In context, range scaling is an identification
property, which is used to speed up convergence of the model, and training effectiveness as
well. Rotation augmentation randomly adjusts the angle of images capturing the objects
within a set number of degrees. This addition improves the angle diversity of the dataset so
the model can learn to detect objects from a different angle. This means the model becomes
less sensitive to certain angles of view, in turn making the model more robust by not
depending too much on fixed angles. The parameters width shift range and height shift range
move the images horizontally and vertically, respectively. These movements model the
interactions of different objects in a scene so that the model does not learn to only focus on
central objects. By giving the model multiple shifted images, it learns to ignore the constant
features of the images, making the model more robust to variations in the data in turn
improving the classification performance [14]. Another important step in pre-processing is
setting the colour mode, which determines the colour channel(s) used to load an image. The
images in the task may need to be converted to a grayscale image (single channel), RGB
image (three colour channels) or RGBA image (four channels with the addition of an alpha
channel having the transparency value). This means the colour mode set is relevant to the
dataset being used and the architecture design of the neural network.

At the last step, the dataset is divided into three parts: training, validation, and testing. Of
the total 17,642 images, 80% or 14,113 images are allocated for training, 15% or 2,646
images for validation and the remaining 5% or 882 images are allocated for testing. Such
separation ensures a structured evaluation of the model’s learning process.

The training dataset is the model’s main source for learning the basic patterns and
distinguishing features of the different categories. When the training dataset is sufficiently
large, the model is able to learn the different attributes of the categories. This results in a
foundation from which the model can make accurate classification decisions from the built
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representations. The model’s performance on the validation set and its ability to incorporate
novel information is assessed during training. This subset allows for the early detection of
overfitting, defined as the model memorising the training data rather than learning general
characteristics. This information is used to make timely adjustments to the model’s
hyperparameters or training duration. When testing, the model has already undergone
training and validation and the purpose now is to provide an unbiased evaluation of the final
model. This dataset displays the model’s performance of classifying completely foreign data,
and thus serves as a reliable measure of the model’s practicality and ability to predict in real-
world scenarios. This pre-processing pipeline augments the dataset to improve model
training, validation, and evaluation, which further assists in developing a robust and
adaptable image classifier.

The model is trained in a manner that allows the network to learn the most essential
features of the data. The training is set for 10 epochs with the Adam optimiser, a gold standard
in deep learning due to its adaptable learning rate and convergence benefits. The training set
has 14,113 images, while 2,646 images are for validation, yielding a balanced evaluation of
model performance during the learning phase. We have decided to select the CNN parameters
to be used in training based on the following considerations: The Adam optimizer was
selected because it combines the benefits of both AdaGrad and RMSProp. Adam adapts the
learning rate for each parameter, accelerating convergence while stabilizing training. This
makes it especially suitable for image datasets with high variability in lighting, symmetry,
and texture. Compared to traditional stochastic gradient descent (SGD), Adam requires less
manual tuning and performs effectively under sparse gradients, which are often present in
facial image analysis. The choice of 128 neurons balances complexity and generalization.
More neurons could increase the risk of overfitting, while too few might cause underfitting.
Empirical trials showed that 128 neurons were sufficient to capture discriminative features
(such as facial irregularities and asymmetries) while maintaining efficiency and preventing
overfitting. This configuration yielded the best validation accuracy. After preprocessing, the
images were resized to 62x62 pixels and converted into grayscale (single channel). This
reduced dimensionality and computational costs while preserving essential facial features.
Color information was deemed less critical for distinguishing real and synthetic faces,
whereas grayscale emphasized structural and textural cues. The size of 62x62 provided a
balance between preserving discriminative detail and ensuring efficient training.

2.4 Modelling

The three subsets within the dataset are training, validation, and testing. Out of the total of
17,642 images, 14,113 images (80%) are used for training, 2,646 images (15%) are used for
validation, and the remaining 882 images (5%) are used for testing. This tiered structure
allows for systematic evaluation of the model’s learning process. The training set is the
primary resource used for the model to learn the patterns and features within and between
different classes. If the training dataset is large enough, the model is likely to learn the
features of all the classes well enough in order to draw enough accurate representations for
confident classification decisions. The model needs to be evaluated using a validation set to
measure its performance and assess how well it is able to generalise to new, unseen data.
Regular evaluation of this subset allows for the detection of overfitting or overtraining, in
which the model learns the training data and fails to learn the underlying, general aspects, so
that corrective changes to hyperparameter values or training time can be made. Once the
training and validation steps are completed, the test set gives a clear-cut evaluation of the
final model. This dataset measures how well the model performs on data that it has never
seen before, which gives a reliable estimation of its practical usability and prediction
accuracy.
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This organised pipeline improves the dataset with the intention of enhancing a model’s
training, validation, and evaluation phases, and consequently, helps build a model with strong
and flexible image classification capabilities. Training the model enables a network to learn
the basic features of an input. In this case, the Adam optimiser, which is widely used
particularly in deep learning because of its learning rate and convergence abilities, performs
10 epochs of training. This dataset contains 14,113 training images and 2,646 validation
images which ensures a fair evaluation of the model over the learning period.

The Table 1 shows the various combinations of hyperparameters used to evaluate the
performance of the Convolutional Neural Network (CNN) design.

Table 1. The combination of hyperparameter

Parameters Values
Learning rate 0.01, 0.001, 0.0001
Activation function Sigmoid, Tanh
Dropout 0.2,0.3,04
Pooling layers Max pooling, Average pooling

Each model configuration was exhaustively tested to find a suitable model which is capable
of high classification accuracy while maintaining cost-effectiveness and general
performance. In order to determine the effectiveness of the created models for classifying
images as authentic or counterfeit, six models were designed for the specified parameter
combinations. The models were compared to determine which one achieved the highest
classification accuracy and generalisation over the set of images. To gain insight, all models
were trained and validated under the same conditions, which were universally set. The
models were built following the same methodology to ensure fairness, order, and precision.
This approach clarified how the architecture and training policies influenced the outcome.
Models were created using specified parameter combinations to assess their effectiveness in
classifying images as authentic or counterfeit.

The aim of this comparative analysis was to determine the best model configuration that
attained the maximum classification accuracy and generalization capability. Every model
underwent training and validation in uniform conditions to guarantee an equitable and
methodical evaluation of how architecture and training parameters influence the overall
performance of the Convolutional Neural Network (CNN)

3 Results and Discussion

The best performance of the Convolutional Neural Network (CNN) algorithm was attained
by utilizing this parameter setup shown in Table 2.

Table 2. The optimal parameter values

Parameters Values
Learning rate 0.0001
Activation Sigmoid
Drop out 0.4
Pooling layer Average pooling 2D
Optimitation Adam
Fully connected layer 128
Number of features 62x62x1

Throughout the training and validation phases, the model demonstrated a learning trajectory
marked by accuracy and loss figures, as shown in Fig. 5 the corresponding graphical
representations.
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Fig. 5. Loss and Accuracy diagram of Training and Validation process

Confusion matrix obtained from testing dataset is:
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Fig. 6. Confusion matrix of testing dataset

From the results of the confusion matrix in Fig. 6, the CNN model that was built had quite
reliable categorisation skills. It achieved 97% training accuracy and 99% validation accuracy
within 18 minutes of training, which was quite impressive. This suggests that the model's
learning technique is very effective, and it is able to adapt to new, unseen data quite well.
The confusion matrix shows the model was able to accurately classify the two target classes
of the project, which are “Al Results” and “Human Originals.” In particular, the model
successfully identified 1,398 images under the “Al Results” category and 1,097 images under
the “Human Originals” category. The model also made some classification errors; 10 images
that were supposed to be “Human Original” were identified as “Al Result,” and the same
goes for 6 images in the other direction that were taken from the “Al Result” group, which
were labelled as “Human Original.” This means that the model is quite functional, but still
seems to have a tiny tendency to confuse real human pictures with Al generated photos. This
might be due to the more advanced generative models that create artificial images, as they
are visually more similar to actual human photos. In some instances, texture, lighting, facial
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symmetry, deformity, and other descriptors may cause confusion for the model and become
misleading.

In general, the resulting CNN models continue to be reliably effective for determining the
authenticity of facial images. There is a high level of precision with low error rates, and high
accuracy is achieved during both training. Execution does not affect the results. Not only
does this demonstrate the capability of the model to practically identify Al generated images,
but it also highlights the need for further development on certain aspects where there exist
minute visual contrasts distinguishing real images from fabricated images.

3.1 Generalisation to a New Data

To enhance the evaluation of the model's generalization capability, the optimized CNN was
assessed on a new dataset that varied from the training and validation data. This dataset
included enhanced images alongside untouched original images, all captured directly with a
mobile phone camera. The addition of these enhanced samples aimed to assess the model's
resilience to changes in data. The enhancement procedure included a random rotation of as
much as 15%, along with vertical and horizontal displacements of up to 10% of the image
size. Table 3 below displays the model's forecasts for both augmented and unprocessed
samples, facilitating a direct comparison. Out of the six images evaluated, the model
accurately identified five images in both scenarios, resulting in an accuracy rate of 84% for
each situation. This indicates that while the model demonstrates strong robustness,
classification mistakes can still occur, particularly when synthetic faces exhibit traits closely
resembling those of actual human features.

Table 3. Results of the model implementation to a new data
No Augmented Original True Prediction Prediction
Label (Augmented) | (Original)

Prediction: 1 (99.55%)

Augmented — Pred: 1 (65.46%

1 REAL REAL REAL
|
granad» -0 0.5
2 - FAKE FAKE FAKE
il
PRy et
3 REAL REAL FAKE
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Augmented - Pred: 1 (97.34%) Erediction. 1 290951
4 REAL REAL REAL
5 REAL REAL REAL
Augmented - Pred: l.E99,75"ﬁ)
6 REAL REAL REAL

Every prediction made by the model comes with a probability score to signify how certain
the model is about every outcome, with the lowest score being 0 and the highest being 1.
Since this is a binary classification, a decision boundary is required to assign a final label to
the input image. For the purposes of this research, the boundary set is 0.5: If the prediction
probability is 0.5 or higher, the image is classified to the positive class as “Human”; else, the
image is tagged “Al Result.” For instance, images with prediction scores from 0.51 to 1.0
will be classified as “Human.” In the case of Image 1, which was the original photo of a real
person, was classified as “Human” in both the original and enhanced versions. In contrast,
Image 3, which is also a real image of a person, was correctly classified as enhanced
augmentation, but in the original form, she was wrongly classified as “Al Result.” This
clearly shows how sensitive the model is to small variations in a set of input features.

The analysis of the updated dataset suggests that the model is less confident when
processing the augmented images compared to the original images. “The mean confidence
score of un-augmented images was 99.55% while the mean confidence about the augmented
counterparts dropped drastically to 65.46%”. This fall in confidence regarding the prediction
of un-augmented images occurs due to the fact that data augmentation used in the model
“distorts” the distribution of input data in a way that may disrupt the interconnections of the
learned visual attributes.

Geometric transformations such as the blurring of a class-specific face, rotation,
horizontal displacement, and vertical shifting are able to transform “in a more subtle way
some crucial face model features the system is trained” to that class. While these
transformations are beneficial in increasing the diversity of the dataset and hence increasing
model generalisation, they lower the model confidence “by adding examples which deviate
too much from the average examples of the training set”. Therefore, it is also correct to say
that, in spite of the fact the final classification is accurate, the confidence score is likely to be
lower.

Alongside this, greater confidence of the model stems from images that closely resemble
ones that were a part of the training, which indicates it depends on certain feature patterns
from the base data. The model's confidence on augmented samples may indeed drop, but it
still manages to hold on to a high rate of accuracy by scoring the majority of images correctly.
This indicates that augmentation may irritate the model's confidence, but the model itself
does not lack the ability to discriminate. This indicates that it is not only classification
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accuracy that matters, but also the confidence in the predictions, since that is the manner
models will be used in real life, to work with more variations of new inputs.

While the study demonstrated strong performance, it is important to reflect on certain
limitations and provide justification for choices made in the scope of this research. We
acknowledge that expanding external validation with more images captured from diverse
real-world sources such as CCTV, social media, and a wider range of smartphones could
further enhance robustness. However, this study intentionally limited its scope to a carefully
curated dataset from Kaggle, GitHub, and TPNE, totaling 17,711 images with significant
variability in texture, resolution, and background. A smaller set of smartphone images was
included to assess cross-domain generalization. While broader validation is desirable,
comprehensive collection and annotation of highly diverse “in-the-wild” images requires
resources and scope beyond this initial investigation. Importantly, the validation conducted
here already demonstrates the model’s ability to generalize to new conditions, providing a
solid basis for conclusions while leaving expanded testing as a focus for future work. It is
also recognized that benchmarking against state-of-the-art models (e.g., XceptionNet,
EfficientNet, or ViT architectures) would provide additional context. However, the goal of
this study was not to compete in performance rankings but to analyze and demonstrate the
effectiveness of a custom CNN through systematic hyperparameter tuning. Incorporating
SOTA models would have shifted the focus toward benchmarking rather than exploring CNN
performance dynamics. Moreover, such models often require larger computational resources
and training pipelines, making fair comparisons beyond the practical scope of this research.
Our CNN achieved exceptionally high accuracy (97% training, 99% validation, and strong
generalization), showing that the chosen architecture was sufficient to answer the research
objectives. Benchmarking with SOTA models remains a meaningful direction for future,
large-scale comparative studies.

4 Conclusion

This study employed CNNs to distinguish real human faces from those synthetically created
by ‘This Person Does Not Exist’ (TPNE), to the point where synthetic faces were generated
in real-time. The optimised model achieved an astonishing 97% accuracy on the training set
while performing 99% accuracy on the validation set, showcasing the robust discriminative
capability of the augmented images positive to the model. The overwhelming gains were
through hyperparameter tuning such as the low learning rate of 0.0001, the activation
function set to sigmoid, dropout set to 0.4, and the inclusion of an average pooling layer.
Diagnostics proved the model differentiated features of the images based on textures,
asymmetrical shapes, and visophonic anomalies, serving as the focal parameters. When
applied to unseen data, the model maintained a 99% accuracy, while the few inaccuracies
primarily lay in synthetic images passing off as real faces. This highlights the capability of
CNNs in mitigating synthetic face images amidst the deepening challenge brought about by
the advancements in imaging. Despite strong performance, several questions remain open
such as: As generative adversarial networks (GANSs) continue to evolve, synthetic faces
increasingly resemble real ones. It is uncertain how well the current CNN architecture will
generalize to images generated by next-generation GANs or diffusion models. Future work
should explore adaptive or transfer learning approaches to maintain high accuracy across
evolving generative techniques. The next one is, the practical deployment in forensic or social
media platforms requires lightweight models. Future work should focus on efficient
architectures (e.g., MobileNet, EfficientNet) to support real-time detection on mobile and
embedded devices.
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