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PREFACE

The 2" International Conference on Applied Sciences and Smart Technologies (INCASST
2025) engages a theme of "Innovating for Sustainability: Digitalization, Green Energy, and
Achieving Energy Independence for a Greener Future”. The scope of the conference covers
green technologies, environmental developments, and also digital societies. This event
addresses various perspectives on how digital innovation in the green energy sectors change
the global landscape towards energy independence and support more sustainable development.
Accordingly, worldwide academics and practitioners were invited to either share their insights
or exchange their ideas.

The dissemination of the ideas was expanded and became particular contribution to be offered
in solving various problems, and earning the better quality of life. The initiation of the ideas
was engaged by four distinguished keynote speakers, i.e. Professor Thomas Go6tz (Dept. of
Mathematics, University of Koblenz-Germany), Prof. Dr. Kavita Sonawane (Dept. of
Computer Engineering, SFIT, University of Mumbai-India), Ishak Hilton Pujantoro Tnunay,
Ph.D (Beehive Drones/PT. Aerotek Global Inovasi-Indonesia), and also Andreas Prasetyadi,
Ph.D. (Dept. of Mechanical Engineering, Universitas Sanata Dharma-Indonesia).

To overcome highly scientific impacts, and achieve a reputable scientific dissemination, a
scientific board which is reliable and of high-caliber in the scope of conference was established.
The determination of member of board was carefully carried out to meet the relevance to the
scope of the conference. It further covers international members from several countries.

In addition, considering that publishing scientific papers involves several key steps to ensure
the works are effectively presented, and reaches the intended audiences, series of procedures
were carefully conducted during papers’ review and selection. They cover contextual reviews
of the received abstracts, editorial screening of its basic compliance and relevance,
comprehensive reviews to address criteria of well-structured scientific manuscripts that must
include clear introduction, methodology, results, discussions, and references. To overcome this
hierarchal stages, a series of smart works were properly carried out by Prof. Peerapong
Uthansakul, Ph.D., Dr. Eng. Ir. | Made Wicaksana Ekaputra, and Ir. Damar Widjaja, Ph.D.

Moreover, a smooth collaboration has been well established between Universitas Sanata
Dharma and several other institutions as the co-hosts, i.e. Universitas Prasetiya Mulya,
Universitas Surabaya, Universitas Pignatelli Triputra and also Universitas Atma Jaya
Yogyakarta. Here also, a collaborative works with PT. Wijaya Kusuma Contractors was
exhibited during this conference.

All in all, this prestige event was well organized by a generous team with a high commitment
and rigorous determination. This committee was also fully supported by Faculty of Science
and Technology, Universitas Sanata Dharma-Indonesia. We do hope future collaborations can
be enhanced in pursuing the better world.

Yogyakarta, October 15", 2025
Organizing Committee of INCASST 2025

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Abstract. This study develops a Long Short-Term Memory (LSTM) neural
network for forecasting water quality parameters at the Wat Makham Station
based on data collected from the Chao Phraya River, Thailand, for nine
months. The study used IoT sensors to collect real-time values for ten water
quality indicators: Turbidity (TURB_NTU), Optical Dissolved Oxygen
(HDO), Dissolved Oxygen Saturation (HDO SAT), Spatial Conductivity
(SPCOND), Acidity/Basicity (pH), Total Dissolved Solids (TDS), Salinity
(SALINITY), Temperature (TEMP), Chlorophyll (CHL), and Depth
(DEPTH). The study identified water quality indicators through the
implementation of an LSTM model following application of data cleansing
techniques, using mainly the Interquartile Range (IQR) method for outlier
detection. The results confirm that prediction accuracy varied across
parameters. For stable indicators, very high prediction accuracy was
achieved: for pH, MSE = 0.0064, MAPE = 0.89%, RMSE = 0.0800, and
RMSPE = 1.12%; for salinity, MSE = 0.0006, MAPE = 10.55%, RMSE =
0.0246, and RMSPE = 41.14%. Temperatures were predicted with high
confidence also: MAPE = 2.59% and RMSPE = 3.24%. In contrast, highly
volatile parameters were difficult to predict; Turbidity MAPE = 32.87% and
RMSPE = 109.22%; Chlorophyll MAPE = 38.64% and RMSPE = 190.15%.

1 Introduction

The Chao Phraya River stretches approximately 372 kilometers, beginning in the central
plains of Thailand, flowing through the Bangkok metropolitan area, and finally reaching the
Gulf of Thailand [1]. The river supports the ecological, social, and economic well-being of
roughly 11.5 million people as a minimum. It is the main source of raw water for clean water
production distributed to different areas under the responsibility of the Metropolitan
Waterworks Authority (MWA) [2]. The issue of water quality and its long-term sustainability
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have grown more difficult, particularly in light of progress in industrial waste, agricultural
activities, and city development.

All humans share a fundamental universal need: access to water, which is the most
essential requirement for all living beings [3,4]. A report published by World Health
Organization (WHO) points out that consumption of contaminated water causes the
transmission of several diseases including diarrhea, cholera and typhoid, which are very fatal
[3]. There are still about 2 billion people that could not access potable water, mostly in the
developing world [5]. To achieve the United Nations Sustainable Development Goal 6 (SDG
6) of ensuring clean water and proper sanitation, it is essential that water quality evaluations
are both efficient and effective in protecting public health and the environment. Conventional
water quality assessment techniques are time-consuming and costly, also lack the capability
for continuous or real-time data collection [6], which is essential for rapid detection and
management of pollution incidents. To address previous issues, recent progress has focused
on employing cutting-edge technologies like the Internet of Things (IoT) and machine
learning (ML) to enhance the effectiveness of water quality monitoring systems [7]. IoT
equipment’s make it possible to collect pollution data continuously while prediction and
change detection of pollution patterns are done by machine learning models in order to
facilitate quick response and proactive water management strategies.

IoT devices combined with artificial intelligence (Al) have recently become significant
in water quality monitoring. Deep learning approaches such as Long Short-Term Memory
(LSTM) networks are highly effective in predicting water-quality parameters and reducing
monitoring costs [9, 10]. Nguyen et al. [10] examined the predictive accuracy of ML models
for indices of water quality in Vietnam and therefore recommended the further use of such
techniques in the Southeast Asia region. Krohkaw et al. [2] employed an LSTM model for
raw-water data from stations along the Chao Phraya River (Sam Lae, Rangsit Siphon, Wat
Phai Lom, Wat Makham, Wat Pho Taeng Nuea, and Bangkhen Water Treatment Plant),
whereas the validation only utilized data from the Sam Lae station. Other ML approaches,
such as ANNs, have also been used successfully by Al-Adhaileh and Alsaade [11] for
improvements of monitoring systems.

The purpose of the study is to develop and analyze predictive models for water quality
monitoring of the Chao Phraya River using deep learning at Wat Makham Station utilizes the
data given in [12]. Thus, while Krohkaew et al. [2] only evaluated LSTM performance at
Sam Lae station, predictive studies for the other station remain unexplored. This study is
conducted with support from the Metropolitan Waterworks Authority (MWA), which is
responsible for managing drinking water supply for the city of Bangkok. Essentially, the
investigation provides a comparatively low-cost method of assessing trends in water quality
without the total reliance on laboratory testing. In particular, this study aims to explain the
effectiveness of an LSTM-based model in the prediction of water quality parameters using
time-series data. The insights given in this study provide insight for the applicability of a
generalized framework, which can be extended to other monitoring stations for future studies.
The summary of related research is presented in Table 1.

Table 1. Water quality monitoring-related research.

Ref. Contribution Water Parameter Country Result
Ref. | Discusses Cd, Cr, BODs, DO, FC, | Mexico Reduced costs
[8] | computational FL, FOG, Hg, NH3, in monitoring

approaches for NOs, Pb, pH, TSS,
estimating WQIs SULF, TDS, TEMP, Zn
(Water Quality Indexes)
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Ref. | Assesses water quality DO, BOD, TCB, FCB, Thailand | Standard

[9] | for agricultural and NH;3 method for
domestic use monitoring

Ref. | Evaluates ML models TEMP, pH, DO, BODs, | Vietnam | Effective

[10] | for water quality COD, N-NHj4, N-NOs, prediction of
classification N-NO,, P-PO4, FCB, river water

TCB quality

Ref. | Implementing ANNs to | DO, pH, Conductivity, India Enhanced

[11] | predict water quality BOD, NOs, FCB, TCB monitoring
changes efficiency

2 Method

2.1 Data acquisition

The dataset from [12] employed the Eurcka Water Probe Manta+35 sensors, as shown in
Figure 1, that were pre-deployed at Wat Makham station; enabling useful, quick, and real
time studies of river water quality. Measurements of each Manta+35 were set for several
important and representative water quality factors: Turbidity (TURB_NTU), Optical
Dissolved Oxygen (HDO), Dissolved Oxygen Saturation (HDO_SAT), Spatial Conductivity
(SPCOND), Acidity/Basicity (pH), Total Dissolved Solids (TDS), Salinity (SALINITY),
Temperature (TEMP), Chlorophyll (CHL), and Depth (DEPTH). Utilizing IoT technology,
these sensors allowed for the implementation of data collection in an unattended mode using
buoys which made it possible to record water parameters every 10 minutes and upload them
into the MySQL database. The entire process was conducted over nine-month period, from
June 2022 to February 2023, and was authorized by local authorities.

(b)

Fig. 1. Manta+35 sensor probe: (a) side view, (b) bottom view, capable of holding up to 14 sensors.

2.2 Dataset preprocessing

Meticulous preparation was needed for deep learning applications to handle a very large and
comprehensive water-quality dataset analyzed at Wat Makham Station with over 35,185 data
points collected in nine months. This preparation began with a thorough statistical analysis
of the dataset, as detailed in Table 2. Subsequently, we performed data-cleaning tasks:
duplications and improper null value entries in the rows are addressed. Following this,
outright outliers were identified and depending on their nature, were appropriately dealt with
using the Interquartile Range method. The interquartile range method is robust for the
detection of outliers in a dataset. This was accomplished by calculating the interquartile
range, which were the range between the first quartile (25th percentile) of the data and the
third quartile (75th percentile) of the data for a given parameter. If a data point falls below
Q; — (1.5 X IQR) or above Q3 + (1.5 X IQR) it is considered a likely outlier.
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Table 2. Statistical data characteristics from data acquisition of Wat Makham Station.

TURB_NTU| HDO HDO_SAT|SPCOND | pH TDS |SALINITY| TEMP | CHL |[DEPTH

count| 35,185 35,185| 35,185 35,185 35,185 35,185 35,185 | 35,185 | 35,185 | 35,185
mean| 30.7696 [1.6181| 21.4624 | 331.5826 |7.2151|206.2113| 0.1502 |29.4965|15.3314| 1.5790
std 58.958 10.8276| 11.0702 |1,840.6545|0.2624| 55.6580 | 0.0416 1.8642 [26.6046| 0.4902

min -2.460 0.01 0.2 0 -19.18 0 0.01 25.110 | -0.03 0.15
25% 12.84 091 11.9 231 7.13 148.4 0.11 28.67 | 2.29 1.21
50% 19.81 1.63 21.8 326 7.22 209 0.15 30.09 | 3.82 1.45
75% 43.45 225 29.8 402 7.30 | 2573 0.19 30.69 | 6.81 2.13
max 5,189 7.84 105.2 345,200 | 41.44 | 321.1 0.24 36.89 | 177.53 | 495

Since some variables (for example: turbidity, TURB_NTU, or chlorophyll, CHL) might
already exist with skewed distributions, the IQR calculations serve best as indicators for
spotting truly exceptional data points. It is also necessary for the values of zeros to be
removed from the dataset. This is because their presence can lead to significant differences
in calculations for Mean Squared Error (MSE) and Root Mean Square Percentage Error
(RMSPE); that is, calculations might include division by zero or infinity (o) values, in turn,
making it hard to derive meaningful measurements of error.

2.3 LSTM model development

LSTM is used to evaluate the time-series water quality dataset from Wat Makham Station.
LSTM networks are a class of RNNs [13,14]. LSTM can learn to predict water quality
parameters over a period of time because their architecture is designed to capture long-term
dependencies, as well as ease in handling sequential data. One example of LSTM is vanilla
LSTM which uses gates (forget gate, input gate, and output gate) to limit information flow
through the data sequence. The gates are nothing more than very specific “neurons” that act
as mini neural networks, monitoring what information comes into the system and controlling
the flow of information inside the LSTM structure.

In this study, the data were represented in a format of NumPy array. This dataset was
divided into a training set and a test set, utilizing 80 % for training. We used MinMaxScaler
to normalize the data between the range [0, 1], to make it suitable for input in the LSTM
model. At the training time, which sequences of 60-time steps are used as input features, and
another step is used as the target variable. These sequences were then reshaped to align with
the three-dimensional input form expected by the LSTM.

The model comprised two LSTM layers (128-unit and 64-unit) followed by two stacked
dense layers for regression output as shown in the Figure 2. The model was compiled with
the Adam optimizer and trained for five epochs using Mean Squared Error (MSE) loss, as it
effectively reduces prediction error. The configuration was selected based on preliminary
analyses and standard procedures in time-series forecasting. Having an 80:20 split ensures
sufficient training data and retains some unseen samples for validation. Adam was chosen
for being adaptive to the learning rate and efficient for use with recurrent networks. The
model was trained for five epochs since the loss curves indicated convergence within this
number of iterations, whereas further training caused overfitting in volatile parameters. The
size of the batch was 32 because it gave a good balance between convergence speed and
stability of the model. Following training, the testing dataset was scaled to facilitate
predictions, which were subsequently inverse transformed to their original scale for
evaluation. The LSTM model was implemented using Python in Google Colab
(Keras/TensorFlow Sequential API), while the data preprocessing was done using scikit-
learn-based tools and performance visualization was done in Matplotlib.
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Fig. 2. Sequential LSTM model architecture used in this study.

(time steps=60, features=1)

(128 units, return=True)

(64 units, return=False)

(25 units, fully connected)

(1 unit, regression output)

Performance metrics, including Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Percentage
Error (RMSPE), were calculated to assess the model’s accuracy. The formulas for MSE,
RMSE, MAPE, and RMSPE respectively use the formulas in (1), (2), (3) and (4).

1« e (D
N P )
MSE = ~ él (v — 9:)
RMSE = VMSE @
Capp 100 Z v — Ui 3)
MAPE = n o= s ‘
4

RMSPE = $

3 Result and discussion

u;)ni i — i\
n vi
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3.1 Result of data preprocessing

Applying the Interquartile Range (IQR) method for outlier elimination, a high ratio of data
retention is achieved in multiple parameters as described in Table 3. Turbidity (TURB_NTU)
still had 98.97% of the original dataset retained after filtering with 34,821 data points.
Similarly high retention rates were found for other parameters, i.e., dissolved oxygen (HDO)
and pH, with 99.93% and 99.94%, respectively. Chlorophyll (CHL) showed the lowest
retention rate of 81.20%, asserting that more data for it were classified to be as outliers
compared to other data in a set. This demonstrates the value of using IQR not only for
detecting outliers but also to keep data meaningful, particularly when dealing with parameters

that are expected to be skewed.

Table 3. The quantity of data remaining for each parameter after IQR removal.

Parameter Data After Percentage of
IQR Removal Filtered Data (%)
TURB_NTU 34,821 98.97
HDO 35,162 99.93
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HDO SAT 35,161 99.93
SPCOND 35,184 99.99
pH 35,163 99.94
TDS 35,185 100.00
SALINITY 35,185 100.00
TEMP 34,971 99.39
CHL 28,570 81.20
DEPTH 35,184 100.00

In this context, the focus has been placed on assessing Spatial Conductivity (SPCOND)
because it determines the water's electrical conductivity and its relationship with ion levels.
An isolated extreme anomaly was detected, prompting the need for a visual illustration owing
to its large deviation from the norm. In Figure 3 panel (a) shows an outlier that skews the
boxplot's scale, while panel (b), which uses the IQR method, shows the SPCOND range of
about 200—400 puS/cm more precisely. Just one data point was removed, reducing the dataset
from 35,185 to 35,184, demonstrating that the outlier had little effect on the overall data
pattern. The histogram in panel (c) reveals that the distribution after the outlier's removal
mostly lies within the range of 200 to 300 puS/cm, with a gradual fall off toward 500 pS/cm.
The existence of this one outlier implies that SPCOND is fairly consistent and justifies the
application of IQR-based filtering for the purpose of data integrity.

Bozplot of spcond

Boxplot of SPCOND

100 200 300
Spatial Conductivity

50000 200000 250000 300000 350000
speand

Histogram of SPCOND

4000
- II .
0
0 00 a0 500

0 00
Spatial Conductivity

(©)

Fig. 3. Data of Spatial Conductivity (SPCOND): (a) Outlier, (b) IQR method, (c) SPCOND after the

outlier’s removal.

3.2 Data analysis

The correlation matrix displayed in Figure 4 highlights significant interactions among
primary water quality parameters including Turbidity (TURB_NTU), Optical Dissolved
Oxygen (HDO), Dissolved Oxygen Saturation (HDO_SAT), Spatial Conductivity
(SPCOND), Acidity/Basicity (pH), Total Dissolved Solids (TDS), Salinity (SALINITY),
Temperature (TEMP), Chlorophyll (CHL), and Depth (DEPTH). Interestingly, pH has a very
strong positive correlation with HDO (0.64) and HDO_SAT (0.68), which means more
alkaline conditions are linked to higher dissolved oxygen and its saturation. In addition,
Turbidity correlates negatively with Salinity (-0.6), SPCOND (-0.6), and TDS (-0.6), which
suggests that the presence of suspended particles reduces the ionic or mineral content of the
river. Meanwhile, Temperature has a positive correlation with pH (0.66) and a moderate one
with Turbidity (0.36), which leads to the conjecture of a connection between high

temperatures, alkaline pH, and increased turbidity.
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Fig. 4. Correlation matrix from 10 parameters of water quality.

SPCOND and Depth show a moderate negative correlation (-0.49), where it is suggested
that the conductivity is greater in more shallow waters. lons and dissolved minerals are likely
to be found in higher concentrations in shallower regions due to evaporation, sediment
contact, or even reduced mixing since the surface is quite close to the bottom. Additionally,
Chlorophyll shows a negative correlation with Turbidity (-0.37) and Temperature (-0.24),
which indicates that higher chlorophyll levels are associated with lower turbidity and cooler
temperatures.

Figure 5 illustrates that the LSTM-generated prediction curves for water quality
indicators display the training data in blue, the validation data in green, and the forecasted
data in orange. It can be seen for turbidity (TURB_NTU-—panel (a)) that the LSTM model
tries to fit the changes in the data but most of the peaks are smoothed out because these only
occur in a short period of time. Changes in Optical Dissolved Oxygen (HDO—panel (b)) and
Dissolved Oxygen Saturation (HDO_SAT—panel (c)) show how trends are reasonably
followed in case of stabilized conditions are maintained, although changes are not well
adjusted either. Spatial conductivity (SPCOND) in panel (d) is able to mimic the data
accurately especially for the smooth regions. For panel (e), Acidity/basicity (pH) deviations
are quite low, suggesting consistent performance. For the panel (f), Total Dissolved Solids
(TDS) align well with the broader trend but is greatly deviating at the peaks and troughs,
indicating its inability to cope with abrupt changes. In the case of the salinity projections
(panel (g)), is one of the best parameters. The behaviour of the model mimics almost exactly
the validation series for the entire time span, which means the model can generalize well.
Temperature (TEMP) in the panel (h) indicates that the general downward trend followed by
a slow rise is well caught by the mode. For Chlorophyll (CHL)—panel (i), the model has
difficulties with larger fluctuations and discrepancies become even obvious during extreme
values. Lastly, Depth (panel j) predictions are well aligned with the actual data with very
minor deviations along the path. To summarize, efficiency of the LSTM model was high for
less changing parameters (salinity, pH, and temperature) for which gate mechanisms were
able to manage long-term dependencies, and for highly dynamic parameters (i.e. turbidity
and chlorophyll) for which memory gates due to additive noise were weak.
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Fig. 5. Time-series predictions for 10 water quality parameters using an LSTM model, comparing the
training data (in blue), validation data (in green), and predicted values (in orange). From (a) to (j),
Turbidity (TURB_NTU), Optical Dissolved Oxygen (HDO), Dissolved Oxygen Saturation
(HDO_SAT), Spatial Conductivity (SPCOND), Acidity/Basicity (pH), Total Dissolved Solids (TDS),
Salinity (SALINITY), Temperature (TEMP), Chlorophyll (CHL), and Depth (DEPTH), respectively.

Table 4. Summary of MSE, MAPE, RMSE, and RMSPE from 10 parameters of water quality.

Parameter MSE MAPE RMSE RMSPE (%)
TURB_NTU 34.2443 32.8662 5.8519 109.2184
HDO 1.0385 65.9926 1.0191 100.5364
HDO_SAT 163.7166 67.4276 12.7952 103.9594
SPCOND 2532.6657 9.4454 50.3256 11.9373
pH 0.0064 0.8943 0.0800 1.1219
TDS 1034.5861 66.4641 32.1650 3588.0596
SALINITY 0.0006 10.5517 0.0246 41.1435
TEMP 0.7468 2.5944 0.8642 3.2416
CHL 5.2448 38.6380 2.2901 190.1467
DEPTH 0.0985 22.6641 0.3139 37.7471

Table 4 provides the overall MSE, MAPE, RMSE, and RMSPE for each of the 10
parameters (summary statistics). It supports the findings from the plots. Summary of the
performance metrics for pH and Salinity shows very low error values across all metrics, with
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an MSPE = 0.0064 and RMSPE =1.1219% (for pH). This indicates the predictions are quite
accurate. Temperature also has low error with MAPE (2.5944%) and RMSPE (3.2416%)
values, which indicates the model would be able to predict steady state parameters very well.

The parameters Turbidity (TURB NTU), Optical Dissolved Oxygen (HDO), and
Dissolved Oxygen Saturation (HDO SAT) showed significantly large errors, highlighting
the model's challenge in accurately capturing sudden variations and outliers. For example,
the parameters Turbidity (with a MAPE of 32.87% and RMSPE of 109.22%) and Chlorophyll
(with a MAPE of 38.64% and RMSPE of 190.15%) point to the challenge of developing
precise models for highly variable factors. Total Dissolved Solids (TDS) got the poorest
performance (MSE = 1034.59, RMSPE = 3588.06%), which is a sign of very strong volatility
and sensitivity to outliers. We should consider improving dynamic indicators by leveraging
feature engineering, managing outliers appropriately, or developing more sophisticated
models.

4 Conclusion

The application of the LSTM model for water quality prediction in the Chao Phraya River,
especially in Wat Makham station, gave an insight into what can and cannot be expected
from deep learning in water quality monitoring. The model gave predictability with high
accuracy for stable concentration parameters such as pH (RMSPE of 1.1219%) and
temperature (MAPE of 2.5944%), thereby ensuring its suitability for giving credible values
for constant water quality indices. However, the error has been found to be very large for
those parameters that are volatile, especially Total Dissolved Solids (TDS) and turbidity,
recording RMSPEs of 3588.0596% and 109.2184%, respectively, laying suggestions for
future work in improving these time-varying water quality parameters. These findings
suggest that while LSTM models hold much promise for water quality monitoring, future
studies should focus on developing more robust methods for the prediction of parameters that
change very fast, possibly by incorporating further feature engineering or more sophisticated
model architectures. Despite such limitations, the study has been able to show the potentiality
of the IoT with deep learning for water quality management systems, especially in
considering water sources of high importance such as the Chao Phraya River.

The authors would like to acknowledge support from The United Board for Christian Higher Education
in Asia.
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