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ABSTRACT 

Objective: The main objective of this research work was to give insight from theory in interpreting electronic absorption spectra of tetrapyrrolic 
macrocycles bearing carboxylic acid groups: protoporphyrin IX, pheophorbide a and its 1-hydroxyethyl derivatives for application in photodynamic 
therapy.  

Methods: All calculations were carried out by using the Gaussian 03W version 6.0. Electronic excitation energies and oscillator strengths were 
computed as vertical excitations from the minima of the ground state structures by using ZINDO and TD-DFT approach in vacuo. The simulated 
spectra were obtained by using the GaussSum 2.2.0 program. 

Results: The results showed that chlorine compounds (pheophorbide a and its 1-hydroxyethyl derivative) display the red-most absorption (Qx

Conclusion: The chlorin compounds bearing carboxylic acid groups were, however, more promising candidates to be utilized in PDT compared to 
the corresponding porphyrin compounds. 

) at 
longer wavelengths and their absorption were stronger than porphyrin compounds (protoporphyrin IX and its 1-hydroxyethyl derivative). On the 
other hand, the 1-hydroxyethyl derivatives were not able to red-shift the absorption compared to the parent compounds. 

Keywords: Absorption spectra, 1-Hydroxyethyl derivative, Photodynamic therapy, Pheophorbide a, Protoporphyrin IX, TD-DFT, ZINDO 
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INTRODUCTION 

PDT is a treatment technique for cancer and for certain benign 
conditions which utilizes a combination of visible light and a 
photosensitizer to produce reactive oxygen species in cells [1]. 
Photosensitizer is activated under irradiation, and the energy is then 
transferred to nearby molecules via a radiationless transition. In 
particular, triplet molecular oxygen (3O2

The most widely used photosensitizer, photofrin (porfimer sodium), 
used mainly in the treatment of esophageal cancer and non-small 
cell lung cancer, illustrates the main problems of today’s 
photosensitizers. Its red-most absorption maximum lies at a too 
short wavelength to achieve optimal tissue penetration, and the 
extinction coefficient for this absorption is low [3]. Photosensitizers 
with the red-most absorption at as long wavelength as possible and 
with enhanced absorption in this region are necessary for successful 
application of PDT. 

) is excited to the singlet 
state that is cytotoxic and can then destroy nearby cancer cells. In 
comparison to other currently available cancer therapeutic methods, 
PDT has the advantage of preferential accumulation of the 
photosensitizer in the tumor tissue and precise selectivity of the 
treatment by controlling the light [2]. 

We present here our work on some tetrapyrrolic macrocycles 
bearing carboxylic acid groups. In general, the 1-hydroxyethyl 
substituent increases the hydrophilicity of the compound, an 
advantage when the drug is administrated systemically. The 1-
hydroxyethyl derivative of protoporphyrin IX (PPIX) was 
synthesized using addition reaction with hydrobromide, followed by 
nucleophilic substitution with H2

The most widely used method to calculate absorption spectra is a 
time-dependent density functional theory (TD-DFT) which, despite 
the fact that it is a single-reference method, has proven sufficiently 
accurate in many studies [6]. However, the performance of TD-DFT 
much depends on the actual functional used in the excited state 
calculations [7-9]. The studies show that the results can deviate 
significantly from experiments and that the performance of the 
functionals often is system specific. On the other hand, several 
prediction of UV-Vis spectra were performed using ZINDO [10-11]. 
In general, DFT methods (TD-DFT) had an extra calculation time 
cost compared to semiempirical methods (ZINDO). The theoretical 
works presented here were focused on the structural, energetic and 
spectroscopic behavior of protoporphyrin IX (1a), pheophorbide a 
(2a) and its 1-hydroxyethyl derivative (1b, 2b) (fig. 1). ZINDO and 
TD-DFT were used for this purpose. On the other hand, we take 
advantage of the λ

O [4]. We have found that the 1-
hydroxyethyl derivative of PPIX efficiently generates singlet oxygen 
than those with parent compound when irradiated with visible light. 
Furthermore, the 1-hydroxyethyl derivative of PPIX showed lower 
dark toxicity in a normal cell compared to the parent compound [5]. 
In the continued effort to design, synthesize and characterize new 

photosensitisers that exhibit a high-efficiency base on its absorption 
spectra, information from modern theoretical methods is very 
useful. In this paper, we show the absorption spectra prediction to 
assess the best molecules for PDT applications. 

max at Qx 

MATERIALS AND METHODS 

band predicted by these two methods in 
order to reach a better agreement between theoretical estimates 
and experimental measurements.  

All calculations were carried out using the Gaussian03W [12]. 
Geometry optimizations were performed by the density functional 
theory (DFT), B3LYP hybrid functional with 6-31G(d) basis set [13]. 
Structures were fully optimized in vacuo. No symmetry constraints 
were imposed during the geometry optimizations. Electronic 
excitation energies and oscillator strengths were computed as 
vertical excitations from the minima of the ground-state structures 
by ZINDO and TD-DFT approach in vacuo, respectively. The TD-DFT 
absorption spectra calculations were carried out using B3LYP with 
standard 6-31G(d) basis set [14]. The simulated spectra were 
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obtained using the GaussSum 2.2.0 program [15]. In comparing the 
theoretical and experimental data, we adjusted a fixed constant 
value (k) of a parent compound (1a, 2a) to its 1-hydroxyethyl 
derivative. 

 

 

Fig. 1: Molecular structures of protoporphyrin IX (1a), 
pheophorbide a (2a) and its 1-hydroxyethyl derivatives 

 

RESULTS AND DISCUSSION 

Geometry optimization 

The optimized configurations of all molecules are depicted in fig. 2. 
The optimized structure showed a planar geometry, which is 
comparable to those reported earlier [8, 16]. Total energy of 1a, 1b, 
2a, and 2b were-1152102,-1248032,-1223981, and-1271943 kcal/ 
mol, respectively. The 1-hydroxyethyl derivative of compounds 
studied has smaller total energy than the parent compounds. 

Electronic absorption calculations in vacuo and comparison 
with experimental spectra 

The experimental electronic spectra of porphyrins are very specific. 
Because of their highly conjugated ring, porphyrin-like systems 
show an intense band (ε ~ 200000) at about 400 nm called the Soret 
or B band while in the region of 500-600 nm there are usually four 
weaker distinct of Q bands. Q bands have the low energy S0 → S1 
transitions (Q-bands) that are nearly forbidden by parity rules as a 
result of the high D2h symmetry while B band has the most intense 
appears at higher energy allowed S0 → S2

The spectroscopic behavior of tetra pyrrolic macrocycles can be 
rationalized in terms of the Gouterman four-orbital model, where 
the principal excitations involve the two highest occupied molecular 
orbitals (HOMO and next-HOMO) and the two lowest unoccupied 
orbitals (LUMO and next-LUMO) [17]. These energies are shown in 
fig. 3. The Gouterman’s four level model of the compounds 
predicts that these four frontier orbitals are separated by a gap 
of 2.5 to 2.9 eV by ZINDO methods and 4.5 to 4.8 eV by TD-DFT 
(table 1). An HOMO-LUMO gap of chlorine (2a, 2b) is lower than 
porphyrins (1a, 1b). Furthermore, it can be seen that the ∆

 transition [17]. 

H-L  of 1a 
and 1b have nearly the same energy, as well as for 2a and 2b. The 
energy difference between HOMO and HOMO-1 orbitals as well as 
the LUMO and LUMO+1 orbitals for the porphyrin compounds (1a, 
1b) are small, in particular when the energies are calculated with 
ZINDO method. 

 

Fig. 2: Optimized geometry of 1a, 1b, 2a, and 2b 
 

 

 

Fig. 3: Orbital energy levels for the four gouterman orbitals of 
1a, 1b, 2a, and 2b by ZINDO (top) and TD-DFT methods 

(bottom)

  

Table 1: Negative of the HOMO (-εHOMO) and LUMO energies (-εLUMO), and HOMO-LUMO gaps (∆H-L

 

) calculated by ZINDO and TD-DFT in eV 

TD-DFT ZINDO 
1a 1b 2a 2b 1a 1b 2a 2b 

-ε 6.38145 HOMO 6.32784 6.38472 6.42662 5.11207 5.04922 5.00459 4.98309 
-ε 1.62747 LUMO 1.53251 1.89303 1.80216 2.23590 2.12543 2.54637 2.48515 
∆ 4.75398 H-L 4.79533 4.49167 4.62446 2.87617 2.92379 2.45822 2.49794 
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Electronic spectra of the compounds in the gas phase calculated by 
ZINDO and TD-DFT are shown in table 2 and table 3, respectively. 
The results show the main excitation energies, along with their 
relative oscillator strengths and the transition character. The optical 
band gap obtained from spectra is the lowest transition (or 
excitation) energy from the ground state to the first dipole-allowed 
excited state, which is an assumption that the lowest singlet excited 
state can be explained by only one single excited configuration, in 
which an electron is promoted from the HOMO to the LUMO. In fact, 
the optical band gap is not the orbital energy difference between the 
HOMO and LUMO, but the energy difference between the S0 state 
and S1 state. Only when the excitation to the S1

On the basis of the Gouterman four-orbital theoretical model, the Q-
band is mainly due to two electronic transitions, named Q

 state corresponds 
almost exclusively to the promotion of an electron from the HOMO 
to the LUMO, can the optical band gap be approximately equal to the 
HOMO-LUMO gap in quantity [18]. 

x and Qy. 

The Qx transition arises from the HOMO → LUMO (in brief notation 
0-0) electronic excitation with a contribution from the HOMO-1 → 
LUMO+1 (1-1), whereas the Qy transition is composed of the HOMO-
1 → LUMO (1-0) and HOMO → LUMO+1 (0 -1) electronic excitations 
[18,19]. Summarized in table 2 and table 3, the Qx band (first excited 
state) is mainly composed of the HOMO → LUMO transition (33 -
73%) with a smaller amount of the next-HOMO → next-LUMO (16-
43%). The next-HOMO → next LUMO electronic excitation 
contributes in a higher amount by TD-DFT compared to ZINDO 
method. The Qx

This can be assigned to a π → π* transition. The Q

 transition corresponds to the strong experimental 
band that plays the basic role in PDT applications.  

y

  

 band counterpart 
equally corresponds to next-HOMO → LUMO and HOMO → next -
LUMO excitations. This second excitation energy falls between 1.82-
2.04 eV with a weak intensity (0.01<f<0.07) by employing the 
ZINDO. Moreover TD-DFT calculated the energy falls between 2.27–
2.39 eV with intensity (0.01<f<0.04). 

Table 2: Excitation energies (eV and nm), oscillator strengths (f) and main configurations obtained by ZINDO. All electronic states belong to 1

Molecule 

A 

Excited state Main configurations energy (eV) a λ (nm) f 
1a 1 34% (1-1)+60% (0-0) 1.6191  765.75 0.06 
 2 31% (1-0)+64% (0-1)  1.8217 680.59 0.0712 
 3 10% (3-1)+25% (2-1)+31% (1-1)+21% (0-0) 3.0555 405.77 1.0973 
 4 11% (3-1)+15% (2-1)+41% (1-0)+20% (0-1)  3.2384 382.85 1.7136 
 5 23% (3-1)+25% (2-1)+21% (1-0)+10% (0-1)  3.2826 377.70 0.8268 
 6 80% (0-2)+3% (3-1)+2% (2-0)+3% (1-6) 3.4044 364.19  0.02 
 7 36% (3-1)+12% (2-1)+25% (1-1)+11% (0-0)  3.5645 347.83  1.6592 
 8 85% (2-0)+5% (2-1)  3.7294 332.45  0.1578 
 9 38% (1-2)+23% (0-5)+19% (0-6)+7% (0-7) 3.9034 317.63 0.0083 
 10 86% (3-0) 3.9469 314.13  0.1483 
1b 1 32% (1-1)+56% (0-0)+3% (1-0)+5% (0-1) 1.6336 758.96  0.0549 
 2 28% (1-0)+60% (0-1)+3% (1-1)+6% (0-0) 1.8318 676.84  0.0752 
 3 19% (3-1)+10% (2-1)+31% (1-1)+21% (0-0)  3.1172 397.74  1.1955 
 4 52% (1-0)+25% (0-1)+8% (1-1)+4% (0-0)  3.3098 374.59 2.1125 
 5 22% (3-1)+49% (2-1)+6% (3-2)+6% (2-0)+ 3.3357 371.69  0.1483 
 6 81% (0-2)+8% (1-5)+2% (0-3) 3.4844 355.82 0.0033 
 7 35% (3-1)+12%(2-1)+22% (1-1)+10% (0-0)  3.6398 340.63 1.7086 
 8 94% (10-4)+3%(3-4) 3.8143 325.05  0.0011 
 9 77% (2-0)+13%(2-1)+3% (2-5)+2% (0-2) 3.8942 318.38  0.1254 
 10 93% (11-3)+4% (11-2) 3.9183 316.42 0.0004 
2a 1 16% (1-1)+72%(0-0)+3% (1-0)+4% (0-1) 1.6068 771.62 0.2511 
 2 36% (1-0)+52% (0-1)+7% (0-0) 2.1303 582.00  0.0494 
 3 38% (1-0)+31%(0-1)+11% (0-2)+6% (1-1) 3.0107 411.81  1.7987 
 4 14% (6-0)+43% (6-2)+11% (6-7)+9% (6-4)  3.1259 396.63 0.0246 
 5 13% (1-0)+33% (1-1)+19% (0-2)+9% (0-0)  3.2378 382.92 1.2543 
 6 34% (2-0)+23%(2-1)+23% (0-2)  3.3876 365.99 0.2021 
 7 31% (2-0)+24%(1-1)+31% (0-2)+5% (0-0)  3.4673 357.58 0.537 
 8 14% (3-0)+17%(2-0)+34% (2-1)+10% (1-2) 3.7876 327.34 0.2786 
 9 10% (4-0)+44% (3-0)+15% (1-2)+4% (7-0)  3.8031 326.01  0.0437 
 10 16% (2-1)+12%(1-2)+40% (0-5)+6% (2-0)  3.8592 321.27 0.0339 
2b 1 21% (1-1)+73% (0-0) 1.6585 747.56 0.1725 
 2 46% (1-0)+48% (0-1) 2.0447 606.36 0.0079 
 3 39% (1-0)+40% (0-1)+8% (2-0)  2.9607 418.76 1.4287 
 4 19% (5-0)+32% (5-2)+7% (8-2)+7% (5-4)  3.0161 411.07 0.0093 
 5  56% (1-1)+19% (0-0)+8% (2-0)+5% (0-2) 3.1842 389.37  1.4631 
 6 48% (2-0)+15% (2-1)+13% (1-1)  3.5273 351.50 0.7606 
 7 63% (0-2)+13% (0-4)+5% (2-0)  3.6958 335.47 0.2243 
 8 42% (1-2)+11% (0-2)+20% (0-4)+3% (1-1)  3.8621 321.03 0.3035 
 9 36% (8-0)+17% (8-1)+18% (5-0)+10% (5-1)  3.9083 317.23 0.0051 
 10 96% (11-3)  3.9197 316.31 0.0004 

a

 

By convention, in parentheses, the first number, n, is referred to as the occupied orbital contribution from HOMO-n, and the second, m, to the 
virtual one LUMO+m.  

The absorption spectra of the chlorins (2a, 2b) show striking 
differences from those of the porphyrins (1a, 1b). The Qx band much 
more intense in the chlorins, and the lowest energy transition 
undergoes a bathochromic (red) shift. For example, TD-DFT 
calculated shows Qx band (λ= 579.96 nm, f=0.1714) for 2a compared 
with 1a (λ=563.95 nm, f=0.005). Chlorin compounds, in which one of 
the pyrrole double bonds has been saturated, are however more 

promising candidates to be utilized in PDT as they display the red-
most absorption (Qx

Fig. 4 and 5 indeed shows that Q

) at longer wavelengths and the absorption is 
stronger compared to the corresponding porphyrin compounds.  

x band of chlorin compound (2b) at 
a longer wavelength becomes much more intense. In the chlorin, the 
component orbital energies of both the eg  (π*) and the anu  (π) levels 
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become well separated (fig. 3). Although the energy of the lowest eg 
(π*) orbital does not increase much, that of the HOMO (a1u) is 
successively raised. The overall result is that the energy of the 

lowest transition (Qx band) decrease along the sequence porphyrin-
chlorin. At the same time, symmetry restrictions are removed or 
modified, and Qx

 
 band becomes more intense. 

Table 3: Excitation energies (eV and nm), oscillator strengths (f) and main configurations obtained by TD-DFT. All electronic states belong to 1

Molecule 

A 

Excited state Main configurations Energy (eV) λ (nm) f 
1a 1 12% (1-0)+43%(1-1)+41% (0-0)+9% (0-1) 2.1985 563.95 0.005 
 2 38% (1-0)+12%(0-0)+41% (0-1)+9% (1-1) 2.3476 528.13 0.0142 
 3 48% (2-0)+20%(2-1)+6% (1-0)+7% (0-1) 2.9298 423.18 0.1333 
 4 16% (2-0)+64%(2-1)+4% (3-0)+3% (1-0) 3.0430 407.44 0.048 
 5 28% (3-0)+24% (3-1)+21% (2-0)+7% (0-1) 3.1173 397.73 0.1916 
 6 13% (3-0)+25% (3-1)+14% (1-1)+13% (0-0) 3.2797 378.03 0.5096 
 7 37% (3-0)+18% (3-1)+6% (4-1)+3% (1-0)  3.4197 362.56 0.5941 
 8 25% (3-1)+4% (4-0)+8% (3-0)+5% (2-0)  3.5009 354.15 0.8779 
 9 76% (4-0)+8% (4-1) 3.6218 342.33 0.1557 
 10 11% (4-0)+73% (4-1)+5% (0-2) 3.6605 338.71 0.0865 
1b 1 20% (1-0)+29% (1-1)+33% (0-0)+24% (0-1) 2.2367 554.31 0.0031 
 2 30% (1-0)+22% (1-1)+20% (0-0)+27% (0-1)  2.3870 519.41 0.0071 
 3 21% (3-0)+19% (3-1)+14% (1-0)+11% (0-1)  3.1405 394.79 0.3663 
 4 46% (2-0)+43%(2-1)+2% (3-0) 3.2330 383.49 0.0137 
 5 19% (3-0)+17%(3-1)+12% (1-1)+13% (0-0) 3.3494 370.17 0.4964 
 6 43% (2-0)+45%(2-1)+3% (3-1)  3.4061 364.00 0.0229 
 7 30% (3-0)+25% (3-1)+3% (1-0)+9% (1-1)  3.5617 348.10 0.7446 
 8 21% (3-0)+28% (3-1)+8% (1-0)+9% (0-1)  3.6791 336.99 1.0185 
 9 64% (4-0)+23% (4-1)+2% (5-0)+3% (0-2)  3.8895 318.76 0.0297 
 10 19% (4-0)+56% (4-1)+16% (1-2) 3.9873 310.95 0.0218 
2a 1 28% (1-1)+68% (0-0) 2.1378 579.96 0.1714 
 2 64% (1-0)+31%(0-1) 2.3246 533.35 0.0277 
 3 92% (2-0)  2.9650 418.16 0.001 
 4 16% (2-1)+42%(1-1)+6% (1-2)+6% (0-0)+7 3.1736 390.67 0.478 
 5 11% (4-0)+35% (0-1)+4% (2-1)+9% (1-0) 3.2396 382.71 0.6766 
 6 77% (4-0)+6% (4-2)+4% (0-1) 3.2854 377.38 0.0929 
 7 90% (3-0) 3.3595 369.05 0.0063 
 8 63% (2-1)+10% (0-2)+7% (1-1)+7% (1-2)  3.5807 346.25 0.3031 
 9 73% (0-2)+2% (6-0)+4% (2-1)+2% (1-1) 3.7257 332.78 0.1372 
 10 13% (7-0)+59% (1-2)+3% (5-0)+3% (2-1)  3.8259 324.06 0.4290 
2b 1 10% (1-0)+25%(1-1)+59% (0-0)+4% (0-1) 2.1497 576.75 0.0929 
 2 55% (1-0)+29%(0-1)+3% (1-1)+9% (0-0) 2.2739 545.25 0.0447 
 3 87% (3-0)+2% (3-1)+4% (3-2)  3.0046 412.65 0.0056 
 4 29% (2-0)+36% (0-1)+2% (3-0)+7% (1-0)  3.0532 406.08 0.2833 
 5 16% (2-0)+42% (1-1)+7% (1-2)+7% (0-0)  3.2524 381.21 0.6066 
 6 42% (2-0)+13%(1-1)+7% (0-1)+8% (0-2) 3.3540 369.66 0.5987 
 7 89% (5-0)+4% (7-0) 3.5294 351.29 0.006 
 8 94% (4-0) 3.6721 337.64 0.045 
 9 87% (6-0)+4% (2-1)  3.8264 324.02 0.0077 
 10 78% (3-1)+6% (5-1)+2% (3-0)+8% (2-1) 3.8437 322.56 0.0032 

a

 

By convention, in parentheses, the first number, n, is referred to as the occupied orbital contribution from HOMO-n, and the second, m, to the 
virtual one LUMO+m.  

Gaussian 03 software was used to predict the electronic absorption 
spectra of compounds. One of the advantages of this software is that 
it includes a module to represent the curve of the spectrum (sum of 
Gaussian curves) calculated from the oscillator strengths and the 
wavelengths making easier to visualize the results. The simulated 
absorption spectrum was constructed using the oscillator strengths 
calculated at the ZINDO (fig. 4) and TD-DFT level of theory (fig. 5), 
fitted to a Gaussian distribution with a full-width at half-maximum 
(fwhm) of 3000 cm-1

Three or four intense transitions were observed in the B-band 
region. Two weak transitions are observed in the low-energy Q-band 
region of the calculated absorption spectrum (Q

.  

x and Qy

The substitution of vinyl groups with 1-hydroxyethyl has little 
influence on the gap and thus on Q

 band). A 
visual comparison between the Gaussian fits and the experimental 
spectra (fig. 6) indicates that the computed spectra pattern look 
remarkably similar to the experimental spectra without the vibronic 
overtones in the Q-band region.  

x bands. ZINDO method shows 
that Qx

These patterns are in good agreement with experimental data (table 
4). In this work, although the absorption bands did not match 
exactly with experiment, the relative shifts in absorption as a 
function of 1-hydroxyethyl substitution were shown to correlate 
very well. These data are important and indicate that the computed 
values of all compounds studied should by analogy correlate with 
one another, and will be useful in predicting the absorption 
spectrum of the yet-to-be prepared other compounds.  

 bands are slightly blue-shifted as one goes from 1a (765.75 
nm) to 1b (758.96 nm), as well as from 2a (771.62 nm) to 2b 

(747.56 nm). The same trend is observed by a TD-DFT method. They 
are slightly blue-shifted as one goes from 1a (563.95) to 1b (554.31 
nm), as well as from 2a (579.96 nm) to 2b (576.75 nm).  

A comparison of the ratios of the Soret band and Q-band extinction 
coefficients in the experimental spectra with the relative extinction 
coefficients in the computed spectra indicate that they are quite 
similar (table 4). The experimental spectra show a relative ratio of 
100:4.5:3.4 for the Soret: Qx:  Qy-band extinction coefficients in 1a. 
In the computed spectra, the analogous ratios of the extinction 
coefficients are 100:4.1:3.5 for 1a by ZINDO and 100:1.6:0.6 by TD-
DFT method. With this information as a benchmark, we calculated 
the Soret: Qx:  Qy-band relative ratio of the not-yet synthesized 2b. 
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Based on the ZINDO method, the Soret: Qx:  Qy-band relative ratio of 
2b is 100:5.4:11.8. Whereas, using TD-DFT method the Soret: Qx: 

Qy-band relative ratio of 2b is 100:6.4:13.3.  

 

 

Fig. 4: Simulated electronic spectra for 1b (top) and 2b 
(bottom) by ZINDO fitted to a Gaussian distribution with fwhm 
of 3000 cm-1. The inset in the upper right shows an expanded 

view of the Q-band region with fwhm 600 cm-1 

 

 

 

Fig. 5: Simulated electronic spectra for 1b (top) and 2b 
(bottom) by TD-DFT fitted to a Gaussian distribution with fwhm 

of 3000 cm-1. The inset in the upper right shows an expanded 
view of the Q-band region with fwhm 600 cm-1 

 

 

 

 

Fig. 6: Calculated (top) and experimental (bottom) spectra of 
pheophorbide a (2a) 

 

Table 4: Relative ratio of observed extinction coefficient (ε) Qx,  Qy

Compounds 

, Soret band, and comparison with calculated results 

λcal  B, Qy, Qx

ε soret: Q
 (nm);  

y:  Qx

λ
a 

cal  B, Qy, Qx

ε soret: Q
 (nm);  

y:  Qx

λ
b 

obs B, Qy,Qx

ε soret: Q
 (nm); 

y:  Qxc 
1a 383, 681, 766; 

100:4.1:3.5 
361, 528, 563; 
100:1.6:0.6 

405, 576, 630 (in DMF); 
100:4.5:3.4 

1b 378, 677, 759; 
100:3.4:2.5 

344, 519, 554; 
100:0.6:0.3 

402, 572, 625 (in methanol); 
100:4.8:2.7 

2a 399, 582, 772; 
100:3.0:15.5 

385, 533, 579; 
100:4.4:27.1 

408, 609, 665 (in diethylether); 
100:7.2:46.0 

2b 402, 606, 747; 
100:5.4:11.8 

378, 545, 577; 
100:6.4:13.3 

 

aElectronic absorption calculations by ZINDO, belectronic absorption calculations by TD-DFT, celectronic absorption experimental. 
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Table 5: Observed Qx

Compounds 

 band and corresponding Qx band calculated results 

λobs (nm) λa cal  (nm) λb cal  (nm)c 
ZINDO TD-DFT ZINDO TD-DFT 

1a 630 (in DMF) 766 564 630 630 
1b 625 (in methanol) 759 554 624 619 
2a 665 (in diethyl ether) 772 580 665 665 
2b  747 577 643 662 

a: The observed band; b: Calculated Q band based on ZINDO and TD-DFT; c: 

 

One can also note that the Q band excitation energy by ZINDO 
method tend to overestimate. The different trend was observed for 
B bands: we calculated them to be at 383 nm and 378 nm for 1a and 
1b, respectively, whereas experiments report respective values of 
405 and 402 nm. These bands are nonetheless not implied in 
phototherapy processes, so we do not analyze here in this part of the 
spectrum. The Q band excitation energy estimation by TD-DFT tend 
to be low compared with the experimental data. These results differ 
from those reported by Palma et al. [8]. The differences of 
estimation and experiment data for TD-DFT and ZINDO method 
were 87-90% dan 78-84%, respectively. Considering the differences 
values reveal the TD-DFT more accurately than ZINDO method.  

Liu et al. [21] and Yuan et al. [22] reported that the visible 
absorption maxima can be precisely calculated by ZINDO/S method 
by adjusting OWFπ-π value (the relationship between π-π overlap 
weighting factor) OWFπ-π. In this work, although the absorption 
bands did not match exactly with experiment, we tried to correlate 
with the experimental results. After conversion with adjusted k 
value, the predicted absorption maxima of 2b are 643 nm by ZINDO 
method and 662 nm by the TD-DFT method (table 5).  

CONCLUSION 

Electronic absorption spectra of PPIX, pheophorbide a and its 1-
hydroxyethyl derivatives were predicted within ZINDO and TD-DFT 
methods. The spectra were analyzed and compared with available 
experimental data. The chlorin compounds bearing carboxylic acid 
groups were, however, more promising candidates to be utilized in 
PDT compared to the corresponding porphyrin compounds. 
Although the absorption bands did not match exactly with 
experiment, the relative shifts and intensity as a function of a 1-
hydoxyethyl substitution and reduction of pyrrole ring were shown 
to correlate very well. Overall, the prediction by using TD-DFT 
reveal more accurately than ZINDO approach. 
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