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ABSTRACT 
By employing Databases of Useful Decoys (DUD) and its 

enhanced version (DUD-E), several attempts to construct 

validated Structure-based Virtual Screening (SBVS) protocols to 
identify cyclooxygenase-2 (COX-2) inhibitors have been 
performed. Both databases tagged active COX-2 inhibitors for 
compounds with IC50 values < 1M. In the search for 

phytochemicals as natural COX-2 inhibitors, however, most of 
their IC50 values are in the micromolar range, which will likely be 
identified as non-inhibitors for COX-2 by the available SBVS 
protocols. In this article, validation of an SBVS protocol by 

adding marginal active COX-2 inhibitors from DUD-E as active 
compounds is presented. Binary quantitative-structure activity 
relationship analysis by using recursive partition and regression 
tree method was performed subsequently to optimize the 
predictive ability of the protocol. The enrichment factor and the 
F-measure values of the optimized protocol could reach 44.78 
and 0.47, respectively. The optimized protocol could identify 1 

out of 9 phytochemicals as COX-2 inhibitors. 
 
Key words: Structure-based virtual screening (SBVS), phytochemical, 
cyclooxygenase-2 (COX-2).  

 

INTRODUCTION 
Enzyme cyclooxygenase-2 (COX-2) 

plays important role in several inflammation-
related pathophysiological processes 
(Chakraborti et al., 2010; Penning et al., 1997; 
Willoughby et al., 2000). Moreover, besides 
being employed in the therapy for 
inflammation, a blockbuster COX-2 selective 
inhibitor celecoxib (Maggon, 2005; Penning et 
al., 1997; Sadée and Bohn, 2006) was reported 
could interfere the apoptosis pathways in 
cancer (Jendrossek, 2013), bind to estrogen 
receptor alpha (Dai et al., 2012; Istyastono et al., 
2015a) and reducing scar formation during 
wound healing processes (Wilgus et al., 2004, 
2003). Targeting COX-2 in drug discovery and 
development programs has therefore become 
of considerable interest, which has also been 
shown by several attempts to construct 
validated in silico protocols, including Structure-
Based Virtual Screening (SBVS) protocols, and 
to employ the protocols to identify and design 
potent inhibitors for COX-2, not only by 
academia but also in companies related to drug 
discovery and development (Cappel et al., 2015; 

Chakraborti et al., 2010; Cianchi et al., 2005; 
Kaserer et al., 2015; Krüger and Evers, 2010; 
Larsson et al., 2005; Pany et al., 2013; Rao et al., 
2006; Yuniarti et al., 2012). Together with the 
public availability of the COX-2 crystal 
structure by Kurumbail et al. (1996) followed by 
other novel crystal structures of COX-2 with 
different co-crystal ligands (Rowlinson et al., 
2003; Wang et al., 2010a; Wang et al., 2010b), the 
publicly available Databases of Useful Decoys 
(DUD) (Huang et al., 2006) and the enhanced 
version of DUD (DUD-E) (Mysinger et al., 
2012) could serve as the sources of virtual 
targets, ligands and decoys to construct and 
retrospectively validate SBVS protocols to 
identify COX-2 inhibitors (Huang et al., 2006; 
Mysinger et al., 2012; Yuniarti et al., 2011). 
Notably, both DUD and DUD-E required a 
compound could be identified as a potent 
COX-2 inhibitor if the compound showed IC50 
as a COX-2 inhibitor < 1μM (Huang et al., 
2006; Mysinger et al., 2012). 

The search for COX-2 inhibitors has 
also involved natural products (Orlikova et al., 
2013; Pany et al., 2013). Nevertheless, two most  
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well-known natural COX-2 inhibitors curcumin 
(Figure 1A) and resveratrol (Figure 1B) showed 
IC50 values of 79.2μM and 32.0μM, respectively 
(Gautam et al., 2011; Larsson et al., 2005). By 
using the method employed by Istyastono et al. 
(2015b) to have additional active histamine H4 
receptor, the data of compounds that have 
been tested as COX-2  inhibitors which have 
been stored in ChEMBL version 21 
(ChEMBL_21; 
https://www.ebi.ac.uk/chembl/) (Bento et al., 
2014) were downloaded and examined. By 
taking into account only compounds that 
published in Journal of Natural Products 
(http://pubs.acs.org/journal/jnprdf), it was 
recorded that at least 74 phytochemicals have 
been examined as COX-2 inhibitors (Bento et 
al., 2014). Similar to curcumin and resveratrol, 
most of those 74 phytochemicals are however 
marginal COX-2 inhibitors with IC50 values > 
1μM, which will unlikely identified as COX-2 
inhibitors by SBVS protocols validated using 
data from DUD or DUD-E (Bento et al., 2014; 
Huang et al., 2006; Mysinger et al., 2012). In 
fact, only 9 compounds out of the 74 

phytochemicals that have IC50 values as COX-2 
inhibitors < 1μM (Bento et al., 2014). 
Moreover, only 7 out of those 9 compounds 
that meet the Lipinski’s rule of 5 (Figure 2) 
(Lipinski et al., 2001). Therefore, development 
of validated SBVS protocols that can identify 
marginal and potent COX-2 inhibitors to cover 
phytochemicals as potential lead compounds is 
required. 

The research presented in this paper was 
aimed to construct and retrospectively validate 
SBVS protocols to identify marginal to potent 
COX-2 inhibitors by using data from DUD-E 
with additional marginal active COX-2 
inhibitors from DUD-E as active compounds 
(Mysinger et al., 2012). The protocols were 
constructed by employing PLANTS1.2 as the 
molecular docking software (Korb et al., 2007; 
Korb et al., 2009) and PyPLIF to identify 
Protein-Ligand Interaction Fingerprints (PLIF) 
to COX-2 as the re-scoring functions (Radifar 
et al., 2013a; Radifar et al., 2013b). The quality of 
the SBVS protocol was subsequently assessed 
(Cannon et al., 2007; de Graaf et al., 2011; 
Desaphy et al., 2013; Powers, 2011) and 

 
 

Figure 1. Structures of curcumin, the active substance found in turmeric (Curcuma longa) (A) and 
resveratrol, a compound mainly found in grapes and red wine (B) (Orlikova et al., 2013; 
Setyaningsih et al., 2013; Yuniarti et al., 2012) 
 

 
Figure 2. Structures of phytochemicals published in Journal of Natural Products and stored in 

ChEMBL_21 database that have IC50 values as COX-2 inhibitors < 1 M and do not violate the 
Lipinski’s rule of 5 (Bento et al., 2014).  
 

https://www.ebi.ac.uk/chembl/
http://pubs.acs.org/journal/jnprdf
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compared to the original SBVS accompanying 
the release of DUD-E (Mysinger et al., 2012). 
Very recently, Istyastono (2015) showed that 
using recursive partition and regression tree 
(RPART) method with the PLANTS1.2 
docking score (ChemPLP score) and the PLIF 
bitstrings resulted from PyPLIF as the 
descriptors increased significantly the SBVS 
predictive ability (Istyastono, 2015; Therneau et 
al., 2015). This approach could avoid the 
dependency of the application of PyPLIF 
towards the reference compound (Istyastono, 
2015). By employing the same strategy, this 
research could increase significantly the 
predictive ability of the SBVS protocols to 
identify marginal and potent COX-2 inhibitors 
with enrichment factor (EF) value of 44.78. 
The optimized protocol was subsequently 
employed to virtually screen phytochemicals in 
figures 1 and 2 as COX-2 inhibitors. 

 

MATERIALS AND METHODS 
The crystal structure of COX-2 obtained 

from the protein data bank (PDB) with PDB id 
of 3LN1 (Wang et al., 2010a) was used as the 
reference structure. Active (435 compounds) 
and marginal active (1538 compounds) COX-2 
inhibitors and the decoys (23150 compounds) 
from DUD-E (Mysinger et al., 2012) were 
employed to perform retrospective validations 
for the SBVS protocol. All calculations and 
computational simulations were performed on 
a Linux (Ubuntu 12.04 LTS Precise Pangolin) 
machine with Intel(R) Xeon(R) CPU E31220 (@ 
3.10 GHz) as the processors and 8.00 GB of 
RAM. Computational medicinal chemistry 
applications employed in this research were 
SPORES (ten Brink and Exner, 2009), 
PLANTS1.2 (Korb et al., 2007; Korb et al., 
2009), Open Babel 2.2.3 (O’Boyle et al., 2011), 
PyPLIF 0.1.1 (Radifar et al., 2013a; Radifar et al., 
2013b), and PyMOL 1.2r1 (Lill and Danielson, 
2011). Statistical analysis was performed by 
using R 3.2.3 (R Core Team, 2015).     

 
Computational Methods 
Virtual molecular target preparation 

The crystal structure of COX-2 with the 
PDB id of 3LN1 (Wang et al., 2010a) was 
downloaded from 
http://www.rcsb.org/pdb/explore.do?structur
eId=3ln1. Only chain A of the crystal structure 

used further in this research (Mysinger et al., 
2012). The module splitpdb in SPORES was 
subsequently used to split and to convert the 
splitted files into mol2 files the virtual COX-2 
(protein.mol2), the co-crystal ligand celecoxib 
(ligand_CEL682_0.mol2), and the water 
molecules. The mol2 files were then ready to be 
employed in molecular docking simulation 
employing PLANTS1.2 docking software.  

 
Ligands preparation for retrospective virtual 
screening 

Known COX-2 active and marginal 
inhibitors and the decoys were downloaded in 
their SMILES format from DUD-e (Mysinger 
et al., 2012). They were stored locally as 
actives_final.ism, marginal_actives_nM_chembl.ism 
and decoys_final.ism. Each compound in the files 
was then subjected to Open Babel 2.2.3 
conversion software to be converted in its three 
dimensional (3D) format at pH 7.4 as a mol2 
file. The settypes module in SPORES was 
subsequently employed to properly check and 
assign the mol2 file into a proper mol2 file ready 
to dock by using PLANTS1.2 docking 
software.    

 
Automated molecular docking and virtual 

screening  

Similar to previously published 
procedures (Istyastono and Setyaningsih, 2015; 
Istyastono et al., 2015a; Setiawati et al., 2014), all 
virtual screenings were performed by docking 
program PLANTS1.2. For each compound, 50 
poses were calculated and scored by the 
ChemPLP scoring function at speed setting 2. 
The binding pocket of COX-2 was defined by 
the coordinates of the center of the co-crystal 
ligand celecoxib and a radius of 5 Å (which is 
the maximum distance from the center defined 
by a 5 Å radius around the reference ligand). 
All other options of PLANTS1.2 were left at 
their default setting (Anita et al., 2012; 
Istyastono and Setyaningsih, 2015). Every 
compound was virtually screened five times 
independently.   

 
Rescoring using protein-ligand interaction 
fingerprints calculated by PyPLIF  

Seven different interaction types 
(negatively charged, positively charged, 
hydrogen bond (H-bond) acceptor, H-bond 
donor, aromatic face-to-edge, aromatic face-to-

http://www.rcsb.org/pdb/explore.do?structureId=3ln1
http://www.rcsb.org/pdb/explore.do?structureId=3ln1
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face, and hydrophobic interactions) were used 
to define the PLIF for each docking pose 
(Radifar et al., 2013b; Setiawati et al., 2014). The 
cavity used for the PLIF analysis consisted of a 
set of amino acid residues in the binding pocket 
of COX-2 defined in subsection Automated 
molecular docking and virtual screening. 

 
Optimizing the SBVS predictive ability using 
RPART  

The docking pose with the best 
ChemPLP score was selected for each virtually 
screened compound. The results were then 
ranked based on their ChemPLP score and the 
enrichment factor of True Positives (TP) at 1% 
False Positives (FP) value or the EF1% value 
was calculated (EF1% = %TP/FP1%) (de Graaf 
and Rognan, 2008; Istyastono and Setyaningsih, 
2015). The compound was predicted as a COX-
2 inhibitor if it showed ChemPLP score ≤ the 
ChemPLP score of the compound at 1% FP 
(Istyastono et al., 2015b). Therefore, the 
protocol was encoded as the EF1%-ChemPLP 
based SBVS. By employing RPART package (R 
Core Team, 2015; Therneau et al., 2015), 
decision trees were generated using ChemPLP 
score resulted from PLANTS1.2 (Korb et al., 
2009) and all PLIF bitstrings resulted from 
PyPLIF (Radifar et al., 2013b) as the descriptors 
(Istyastono, 2015). The predictive quality of the 
best decision tree resulted from RPART 
method was measured by examining the EF 
value (de Graaf et al., 2011), the balance 
accuracy (Cannon et al., 2007; Therneau et al., 
2015) and F-measure value (Desaphy et al., 
2013). The predictive quality of the best 
decision tree was also compared to the 
predictive quality of the EF1%-ChemPLP based 
SBVS by employing McNemar’s test (Cannon et 
al., 2007). 

 
Virtual screening on some phytochemicals  

By employing the best SBVS protocol 
resulted from the subsection Optimizing the 
SBVS predictive ability using RPART, virtual 
screening campaigns to predict whether the 
COX-2 inhibitors (Figures 1 and 2) were also 
identified as COX-2 inhibitors virtually were 
performed. The virtual compounds were 
downloaded in their SMILE formats from             
the  ChEMBL_21  database (Bento et al., 2014).  

Subsequently, the virtual compounds were 
prepared and examined using the best SBVS 
protocol.  

 

RESULTS AND DISCUSSION 
Aimed to construct and evaluate the 

validation of an SBVS protocol to identify 
phytochemicals as inhibitors for COX-2, this 
research employed marginal and potent COX-2 
inhibitors organized and stored in DUD-E 
(Mysinger et al., 2012) as the retrospective 
compounds for the validation. Similar to the 
construction of an SBVS protocol to identify 
potent ligands for adrenergic β2 receptor 
(Istyastono and Setyaningsih, 2015), the SBVS 
constructed here employed PLANTS1.2 as the 
molecular docking software (Korb et al., 2007; 
Korb et al., 2009) and PyPLIF as the PLIF 
identification software for rescoring the results 
from PLANTS1.2 (Radifar et al., 2013a; Radifar 
et al., 2013b). Additionally, the SBVS protocol 
constructed here employed the ChemPLP 
scores from PLANTS1.2 (Korb et al., 2009) 
and the PLIF bitstrings from PyLIF (Radifar et 
al., 2013b) obtained from the docking pose with 
the best ChemPLP score in each virtually 
screened compound as descriptors to generate 
decision tress using RPART package in R 
(Istyastono, 2015; R Core Team, 2015; 
Therneau et al., 2015).     

 
Retrospective Validation of the SBVS 
protocol 

The retrospective SBVS campaigns on 
COX-2 ligands and their decoys have resulted 
in 3,767,550 docking poses and 1,318,642,500 
PLIF bitstrings resulted from 25,117 out of 
25,123 screened compounds. Six decoys could 
not pass the constructed protocol, which were 
then assigned as True Negatives (TN). The 
EF1%-ChemPLP based SBVS resulted in 
ChemPLP score of -108.028 as the cutoff 
score. Employing this cutoff score resulted in a 
confusion matrix presented in Table 1. The EF 

value of the protocol was 3.55, which was very 
low compared to the reference (EF value = 
12.9) and was not recommended to be 
employed further (Istyastono et al., 2015b; 
Mysinger et al., 2012). Inspired by Istyastono 
(2015), RPART package in R compu-               
tational statistics software (R Core Team, 2015;  
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Figure 3. The decision tree adopted from the best decision tree resulted from the RPART method 
(Istyastono, 2015; Therneau et al., 2015). 
 
Table I. The confusion matrices and the statistical significances resulted from the validation of the 
SBVS protocol to identify COX-2 inhibitors 
 

Parameters 
SBVS 

EF1%-ChemPLP based Optimized using RPART 

Confusion Matrices 
True Positives (TP) 70 668 
False Negatives (FN) 1903 1305 
True Negatives (TN) 22919 22975 
False Positives (FP) 231 175 
Statistical Significances 
Sensitivity 0.04 0.34 
Specificity 0.99 0.99 
Enrichment Factor (EF) 3.55 44.78 
Balanced Accuracy 0.51 0.67 
F-measure 0.06 0.47 

  
Table II. Decision trees resulted from employing RPART method on the SBVS results to identify 
marginal COX-2 ligands 
 

No. CPa) Training Set Error Rate 10-fold Cross-validated Error Rate 

1. 0.0659 0.0216 0.0216 
2. 0.0476 0.0177 0.0180 
3. 0.0283 0.0163 0.0166 
4. 0.0209 0.0155 0.0158 

5.b) 0.0106 0.0148 0.0151 
 

a)Complexity parameter of the decision tree; b)The selected decision tree with the lowest training set 
error rate and the lowest 10-fold cross-validation error rate (see figure 3). No evidence of 
overfitting was found since the ratio of the 10-fold cross-validation error rate over the training error 
rate is less than 1.5 (Cappel et al., 2015).  
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Therneau et al., 2015) was used to generate 
decision trees using ChemPLP scores and PLIF 
bitstrings descriptors to optimize the SBVS 
protocol. The best decision tree (Figure 3) 
resulted in a confusion matrix with EF value of 
44.78. The EF value of the optimized SBVS 
protocol was higher than the EF1%-ChemPLP 
based SBVS (3.55) and the reference (12.9). 
Moreover the predictive ability of the 
optimized protocol was statistically better in 
confidence level of 95% compared to the 
EF1%-ChemPLP based SBVS (p-value < 0.05) 
using McNemar’s test  with chi-squared value 
of 417.23 (Cannon et al., 2007; R Core Team, 
2015).  

The predictive ability of the optimized 
protocol was considered as acceptable since it 
outperformed the reference protocol (Mysinger 
et al., 2012). By examining the statistical 
significances (Table I), although the optimized 
protocol could be used further in prospective 
campaigns since the EF value was sufficiently 
high (de Graaf et al., 2011; Istyastono et al., 
2015b), the sensitivity value was still considered 
as low (Desaphy et al., 2013). The predictive 
ability was mainly contributed by the high 
specificity value. This indicated that if a 
compound predicted as a COX-2 inhibitor 
using this optimized in silico screening protocol, 
it would be high likely as COX-2 inhibitor in 
vitro. But, if a compound predicted as a non 
COX-2 inhibitor, it would still likely be a COX-
2 inhibitor in vitro since the sensitivity value was 

low caused by the high number of the false 
negatives (FN; Table 1). This high number of 
the FN was the limitation of the optimized 
SBVS protocol that could be improved to 
increase the predictive ability of the SBVS 
protocol by employing some more advanced 
approaches, for example: (i) employing anchor 
reactions during molecular docking simulations 
(Yuniarti et al., 2011) or post-docking pose 
selection (de Graaf et al., 2011; Istyastono et al., 
2015b), and/or (ii) employing advanced used of 
PLIF bitstrings (Desaphy et al., 2013).   

Based on Figure 3, the most important 
descriptor to identify COX-2 inhibitors was the 
hydrogen bond interaction to ARG499 
(previously reported as ARG513 in the older 
COX-2 crystal structure (Kurumbail et al., 
1996)) with the inhibitors as the acceptor (PLIF 
bitstring #221). This interaction was identified 
previously as the anchor interaction of           
COX-2 inhibitors to COX-2 binding          
pocket (Kurumbail et al., 1996; Wang et al.,                 
2010a; Yuniarti et al., 2011). This anchor 
interaction was identified in the interaction         
of selective COX-2 inhibitor celecoxib in            
the COX-2 binding pocket (Wang et al., 2010a). 
Alternatives important interactions identified     
in this research were: (i) hydrogen bond 
interaction with the residue as the acceptor, 
which were to GLN178 (PLIF bitstring #           
68; Previously reported as GLN192 in             
the older COX-2 crystal structure (Kurumbail  
et al.,  1996)),  LEU338   (PLIF  bitstring  #138; 

Table III. The in silico screening results on some phytochemicals as COX-2 inhibitors 
 

Name IC50 (nM)a)
 

Decision Tree Parametersb) 

TP or FNc) 
ChemPLP score 

PLIF bitstring number 

17 18 68 138 221 242 

Curcumin 79200 -86.1881 1 0 0 0 0 0 FN 
Resveratrol 32000 -90.2518 1 0 1 0 0 1 TP 
Radicicol 27 -49.8668 0 0 0 0 0 0 FN 
Triptolide 40 -67.6514 0 0 0 0 0 0 FN 
Tryptanthrin 64 -87.7228 1 0 0 0 0 0 FN 
Rutaecarpine 300 -86.6826 1 0 0 0 0 0 FN 
Encelin 400 -66.2878 0 0 0 0 0 0 FN 
Enhydrin 600 -37.5564 0 0 0 0 0 0 FN 
Parthenolide 800 -63.2679 0 0 0 0 0 0 FN 

 

a)Ref: (Bento et al., 2014); b)See Figure 3 for more explanation; c)TP and FN stand for True Positive 
and False Negative, respectively 
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Previously reported as LEU352 in the older 
COX-2 crystal structure (Kurumbail et al., 
1996)) or  PHE504 (PLIF bitstring #242; 
Previously reported as PHE518 in the older 
COX-2 crystal structure (Kurumbail et al., 
1996)); (ii) hydrogen bond interaction to HIS75 
(PLIF bitstring #18; Previously reported as 
HIS90 in the older COX-2 crystal structure 
(Kurumbail et al., 1996)) with the residue as the 
donor; and (iii) edge-to-face aromatic 
interaction to HIS75 (PLIF bitstring #17). 

Celecoxib was also reported having the 
interaction to GLN178, HIS75 and PHE504 
(Wang et al., 2010a). The interaction to LEU352 
could categorized as novel interaction, but it 
was not rare in COX-2 binding since very 
recently several COX-2 inhibitors could 
proceed further to the clinical trial phase 
although the compound did not show 
interaction to the previously known important 
residues in the COX-2 binding pocket (Wang et 
al., 2010a; Wang et al., 2010b). The decision tree 

 

Figure 4. The selected docking pose of resveratrol (sticks mode; carbon atoms in cyan) in COX-2 
binding pocket (lines mode; carbon atoms in green). For clarity, (i) only polar hydrogens (in white) 
are presented, and (ii) only main chain atoms are presented for the binding pocket except for the 
important residues: HIS75, GLN178, ARG499, and PHE504 (see also Figure 3). Oxygens and 
nitrogens are colored in red and blue, respectively. Hydrogen bonds and aromatic interactions are 
presented in black dashed lines and yellow dashed lines, respectively. 
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resulted from RPART method was therefore 
could identify alternative important interactions 
which in turn could increase the predictive 
ability of SBVS protocols by decreasing the 
number of FP and FN. Moreover, the 10-fold 
cross validation in the construction of decision 
trees (Table 2) showed that there was no 
evidence of overfitting of the selected decision 
tree, and the 1000 times Y-randomization 
showed that there is no evidence of chance 
correlation (Cappel et al., 2015; Lim et al., 2009). 

 

Phytochemicals Virtual Screening 
Employing Optimized Protocol 

Nine compounds presented in Figures 1 
and 2 were examined using the optimized 
SBVS protocol (Figure 3 and Table 1). The 
results are presented in Table 3. Surprisingly, 
only resveratrol was predicted as a COX-2 
inhibitor in this research. It was therefore 
suggested that beside the protocol should be 
improved to reduce the number of FN, as 
described in the previous subsection, the 
protocol exclusively identified marginal COX-2 
inhibitors. This should be verified by testing 
more representative numbers of other external 
marginal and potent COX-2 inhibitors. 

The docking protocol used here is the 
same as the docking protocol employed by 
Mumpuni et al. (2015), which re-dock co-
crystalized ligand celecoxib to the crystal 
structure 3LN1 with the root-mean-square 
deviation (RMSD) value of 0.525 Ǻ. Since the 
value was less than 2.0 Ǻ (Mumpuni et al., 
2015), the selected pose of resveratrol here 
(Figure 4) could be considered as the right 
pose. In the visual inspection on the best pose 
of resveratrol in COX-2 binding pocket (Figure 
4) using PyMOL (Lill and Danielson, 2011) and 
the examination of Figure 3 and Table 3, 
resveratrol was predicted as COX-2 inhibitor 
by binding to HIS75 (edge-to-face aromatic 
interaction), GLN178 (hydrogen bond), and 
PHE504 (hydrogen bond). Surprisingly, the 
selected pose for resveratrol did not bind to 
ARG499. The decision tree (Figure 3) provided 
alternative interactions in COX-2 ligand 
binding (Wang et al., 2010a; Wang et al., 2010b). 
Since the first branch of the decision tree 
involved  hydrogen bond to ARG499 (Figure 
3), employing this as the anchor interaction in 
the molecular docking simulation (Wang et al., 

2010a; Yuniarti et al., 2011) could therefore 
increase the predictive ability of the SBVS 
protocol. 

 

CONCLUSIONS 
The optimized SBVS protocol 

employing PLANTS1.2 and PyPLIF followed 
by RPART method to produce decision tree to 
identify phytochemicals as COX-2 inhibitors 
has been retrospectively validated using DUD-
E with additional marginal active compounds 
as the active compounds. The protocol resulted 
in better predictive ability in COX-2 inhibitors 
identification compared to the original protocol 
accompanying the release of DUD-E. However 
the sensitivity value was still considered as low, 
which was also indicated by predicting correctly 
only 1 out of 9 phytochemical as COX-2 
inhibitors. The improvement could be achieved 
by employing hydrogen bond to ARG499 as 
the anchor interaction during the molecular 
docking simulations using PLANTS1.2 before 
the PLIF identification using PyPLIF.    
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