

ORB Image Detection in Android

Puspaningtyas Sanjoyo Adi

Universitas Sanata Dharma

Yogyakarta, Indonesia

puspa@usd.ac.id

Sri Hartati Wijono

Universitas Sanata Dharma

Yogyakarta, Indonesia

tatik@usd.ac.id

Silverio R.L. Aji Sampurno

Universitas Sanata Dharma

Yogyakarta, Indonesia

silverio@usd.ac.id

Abstract—

 In recent years, there has been rapid development of the technologies used in smart

devices. Hence, research into these technologies is required in order to expand our

understanding of these devices. One of the main features of smart devices is the mobile

camera. Many studies have been conducted about how to utilizing service using camera. A

key component of camera applications is image processing software. In this paper, we

analyze the performance of the ORB algorithm for image detection in mobiles. We use

Android applications with OpenCV library. Through this study, we find that ORB

algorithm can work well for image detection in mobile applications.

Index Terms—

 Feature detector, Computer vision, Image processing, ORB, OpenCV

I. INTRODUCTION

Currently the image features can be summarized as two categories: global features (such as

color, texture, outline, etc.) and local features. They are used to describe global information

and local details of the images respectively. A lot of experimental results show that the

integrated features which combine these two kinds of features can improve recognition

accuracy effectively [2].

Scale Invariant Feature Transform (SIFT) is the most representative local feature descriptor

currently, which is invariant to image scale and rotation, and proven to be able to provide

robust matching across a substantial range of affine distortion, variations of 3D viewpoint and

illumination [3]. But the computational complexity of feature extraction is very high.

Therefore, a variety of fast local feature extraction algorithms have been proposed, such as

Speeded Up Robust Features (SURF)[4], Oriented FAST [7] and Rotated BRIEF [5]

(ORB)[6] etc. Compared with SIFT, the extraction speed of these features are much faster

than that of SIFT and they can achieve comparable performance when they are used in image

classification, retrieval and other applications.

mailto:puspa@usd.ac.id
mailto:tatik@usd.ac.id
mailto:rio@usd.ac.id

II. COMPUTER VISION TECHNOLOGIES

A. ORB feature detection and descriptor matching

Currently, common feature point matching algorithms include SIFT [3], SURF [4], BRIEF

[5], ORB [6]. The key factor affecting speed and accuracy of feature point matching is

feature detection. There are two kinds of feature detection: descriptor based on absolute value

and descriptor based on comparison. SIFT and SURF which stand for descriptor based on

absolute value generally quantify gray or gradient to get a histogram, then construct

descriptor based on histogram. Compared with SIFT and SURF, BRIEF and ORB based on

comparison have great advantage. They construct the descriptor by comparing the

characteristic value which is pre-trained or belongs to random points. This kind of descriptor

is designed to improve speed. As can be seen from [5] and [6], it takes respectively 5228.7

(ms), 217.3 (ms), 8.87 (ms), and 15.3 (ms) for SIFT, SURF, BRIEF-32 and ORB to process

one frame. Compared with ORB, BRIEF is faster but it do not have the rotation invariance.

When people use the smart phone, the change of rotation and position is relatively frequent.

So BRIEF is not suitable for feature point matching for smart phone. ORB is proposed based

on BRIEF. It has rotation invariance because of adding a direction variance to each

descriptor. So this paper chooses ORB descriptor.

B. Open CV

OpenCV (Open Source Computer Vision Library) is released under a BSD license and hence

it is free for both academic and commercial use [1]. It has C++, C, Python and Java

interfaces, and supports Windows, Linux, Mac OS, iOS and Android operating systems.

OpenCV is designed for computational efficiency, with a strong focus on real-time

applications. Since it is written in optimized C/C++, the library can take advantage of multi-

core processing. Also, it supports low-level and high-level APIs (Application Programming

Interfaces), and is suitable for real-time applications. OpenCV has a modular structure, which

means that the package includes several shared or static libraries. The following modules are

available:

(1) core: A compact module defining basic data structures, including the dense multi-

dimensional array “Mat” and basic functions used by all other modules.

(2) imgproc: An image processing module that includes linear and non-linear image filtering,

geometrical image transformations (resize, affine and perspective warping, generic table-

based remapping), color space conversion, histograms, and so on.

(3) video: A video analysis module that includes motion estimation, background subtraction,

and object tracking algorithms.

(4) calib3d: Basic multiple-view geometry algorithms, single and stereo camera calibration,

object pose estimation, stereo correspondence algorithms, and elements of 3D reconstruction.

(5) features2d: Salient feature detectors, descriptors, and descriptor matchers.

(6) objdetect: Detection of objects and instances of the predefined classes (for example, faces,

eyes, mugs, people, cars, and so on).

(7) highgui: An easy-to-use interface for video capturing, image and video codecs, as well as

simple UI capabilities.

(8) gpu: GPU-accelerated algorithms from different OpenCV modules.

III. SIMULATION DESIGN

In order to improve development efficiency, we choose to do with OpenCV. OpenCV is an

open source computer vision library, and it implements many common algorithms of image

processing and computer vision. OpenCV provides two kind of interface, C++ and Java, the

paper chooses Java interface in order to maintain consistency with the architecture of

Android developing tools.

We simulate an ORB algorithm based on the Android operating system in real-time camera.

The flowchart of object detection process is shown in figure 1. At first, reference image is

saved in application and application will compute and get key point extractor and its

descriptor. Application will reference image descriptor. We use ORB key point extractor and

descriptor. After that, video picture is taken from smart phone camera. Application will get a

sample video frame as scene image. ORB algorithm calculates key point and descriptor.

Furthermore, the application will calculate the level of accuracy (matching) or descriptor

matcher between two descriptors, reference descriptor and scene descriptor. The calculation

result is a list of list of a couple of key points reference image and scene image along with the

distance between keypoint. Furthermore, the application will find good key point with the

steps: 1) calculate the minimum distance of all couples are formed. 2) find a couple keypoint

within less than 1.5 times the minimum distance. Couple this keypoint hereinafter referred to

as good key point. Furthermore, the application will calculate homografi with the input

parameter is a good key point and the key point of the scene image. Homografi calculation

will result in recognition status outputs reference image, known or not. If recognized, then the

application will draw a box poses as a sign that the reference image is recognized on the

scene image.

Reference
Image

Scene
Image

Video
Scene Image

Key Point
Extractor

Descriptor

Key Point
Extractor

Descriptor

Descriptor
Matcher

Find Good
KeyPoint

Find
Homografi

Detected

Draw
match lines

Figure 1. flowchart of object detection process

The Android application is designed based on the class diagram shown in Figure 2.

MainActivity class is the main class in android application. MainActivity class

implements the interface CvCameraViewListener2. This interface is the interface of the

package OpenCV. This interface provides three functions: onCameraFrame (),

onCameraViewStarted (), onCameraViewStopped (). OnCameraFrame() is a

function that constantly works when the camera taking pictures. In onCamera(), the function

ImageDetectionFilter.apply() is called. Function apply () on class

ImageDetectionFilter work according to flowchart image detection, corresponding figure

1.

+onCreate()

+onCameraFrame()

+onCameraViewStarted()

+onCameraViewStopped()

MainActivity

«interface»

CameraBridgeViewBase.CvCameraViewListener2

+apply()

ImageDetectionFilter

1

1..*

AppCompatActivity

+apply()

NoneFilter

1
1

+apply()

«interface»

Filter

Figure 2. application class diagram

IV. ANALYSIS OF RESULT

Application tested by detecting four reference image, see figure 3. The application installed

on the smartphone Samsung Galaxy Tab S2 series SM-T705. Smartphones fitted with a

tripod to steady his position and exposed to the notebook display images or objects that have

the same image with the reference image. Notebook will display a variety of images in which

there are refence image.

Flight of sultan

bahadur.jpg

starry_night.jpg Self portrait.jpg Picnic1.jpg

Figure 3. referece images

Image detection results can be seen in figure 4. Application can detect the reference image,

picnic1.jpg, and making pose boxes and connecting lines between good key point in the scene

image.

Figure 4. ORB detection result

Table 1. object detection time

file average good keypoint average detection time (mS)

flight_of_sultan_bahadur.jpg 10 773,07

starry_night.jpg 12 854,70

self_portrait.jpg 15 887,64

Picnic1.jpg 16 905,06

Figure 5. Object detection time graphic

Table 1 shows the mean time image detection. There are 4 image files are trying to identify.

Each picture has a average good key point, which amounts vary between images. Figure

picnic1.jpg who had a mean good key point of the most high has image detection time of

905.06 ms, while images flight_of_sultan_bahadur.jpg having a good key point average of

773.07 to have image detection time of 773.07 ms. Of figure 5, the average time image

detection increases in proportion with the addition of good key point. Good key point is the

key point that has a distance of 1.5 times the minimum distance. This experiment has not

been tried for various alternative minimum distance variables to find the optimal solution.

V. CONCLUSION

The result of this simulation Showed that the increasing of good key point will increase of

detection time. Good key points is key points that have distance of 1.5 minimum distance.

For further research, the minimum distance variables can be used as study materials to find

the most optimum value.

ACKNOWLEDGMENT

The research work was supported by Penelitian Hibah Bersaing Kemenristekdikti Indonesia

under Grant No. 010/HB-LIT/III/2016.

References

[1] OpenCV (Open Source Computer Vision), http://opencv.org.

[2] Yan Sun, Research on Some Algorithms of Content-based Image Retrieval and

Sensitive Image Filtering (Ph.D. Dissertation), Jilin University, Jilin, 2011.

[3] David G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.

Comput. Vis. 60 (2), 2004, 91–110.

[4] B. Herbert, T. Tuytelaars, L.V. Gool, Surf: speeded up robust features, Computer

Vision – ECCV, vol. 3951, 2006, pp. 404–417.

[5] M. Calonder, V. Lepetit, C. Strecha, P. Fua, Brief: binary robust independent

elementary features, Computer Vision – ECCV 2010, vol. 6314, 2010, pp. 778–792.

[6] E. Rublee, V. Rabaud, K. Konolige, G. Bradsk, ORB: an efficient alternative to SIFT

or SURF, in: International Conference on Computer Vision (ICCV), 2011, pp. 2564–

2571.

[7] E. Rosten, R. Porter, T. Drummond, Faster and better : a machine learning approach

to corner detection , IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 2010, 105–119.

http://opencv.org/

