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Abstract. Adomian decomposition method has been a powerful method to solve differential 

equations. In this paper, we propose the method to solve the population dynamics model of two 

species for mutualism, parasitism, and competition. These three scenarios are considered for 

the completion of our research. Adomian decomposition method uses initial values of the 

unknowns and provides series of approximate solutions to the problem. We obtain that the 

Adomian decomposition method provides fast computation for the solution. 

1.  Introduction 

Population dynamics model has been developed in the field of mathematical biology. Populations of 

species increase or decrease over time depending on a number of factors. A population certainly 

interacts with other populations, causing a system dynamics [1]. 

Two populations interact with the properties of mutualism, parasitism, and competition. These 

interaction can be formed from a general model (system) of differential equations. Interaction type in 

both populations can vary depending on the value of each given parameter in the general model. 

Finding the solution to the model using the aid of computer nowdays is often desired [2-5]. This is 

because fast and accurate results are important to solve real problems. 

In this paper, we solve the population dynamics model of two species using the Adomian 

decomposition method. The method is chosen because it is meshless, is an analytical approach, 

possess a fast convergence, and can be implemented on a computer easily [6-11]. It is often related to 

the variational iteration method [12-16]. 

The paper is organised as follows. Section 2 contains the problem formulation that we want to 

solve. Section 3 present the Adomian decomposition method for the population dynamics model. 

Computational results are provided in Section 4. We conclude the paper in Section 5. 

2.  Problem formulation 
We consider the nonlinear system of the form [12] 

����� = ���� + 
�� + ���
,���� = ���� + 
�� + ���
.� (1) 
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Here � = ���
 and � = ���
 are populations of the first and second species at time �, respectively. In 

addition, ��, 
�, ��, ��, 
�, �� are constants described as follows: 

• � is the population of the first species, 

• �� denotes the growth rate of the population of the first species, 

• 
� denotes the carrying capacity of the population of the first species, 

• �� denotes the interacting constant of the population of the first species with the second one, 

• � is the population of the second species, 

• �� denotes the growth rate of the population of the second species, 

• 
� denotes the carrying capacity of the population of the second species, 

• �� denotes the interacting constant of the population of the second species with the first one. 

This model (1) governs mutualism, parasitism, and competition interactions. 

3.  Adomian decomposition method 

We derive the Adomian decomposition method to solve the model following Batiha et al. [12].  

Model (1) can be rewritten as 

����� = ��� + 
��� + ���� ,���� = ��� + 
��� + ���� .� (2) 

Introducing the derivative operator � = ���, we obtain 

��� = ��� + 
��� + ���� ,�� = ��� + 
��� + ���� .� (3) 

Applying ��� = � �. 
����  to both sides of the nonlinear system (3) gives  ������ = ������ + ���
��� + ������� ,����� = ������ + ���
��� + ������� .� (4) 

The Adomian decomposition method admits the decomposition of � and � into an infinite series 

components 

���
 = � ��
�

���  ���
 = � ��
�

���  

 

(5) 

and the nonlinear terms ��, �� and �� are assumed to be in the following forms: 

�� = �  � ,�
���  

 

�� = � !�
�

���  , 
 

�� = � "�
�

���  . 
 

 

(6) 

We define   �, !� and "� as 

 � = � �#���#
�

#��  , !� = � �#���#
�

#��  , "� = � �#���#
�

#��  . 
 

 

(7) 

We have Adomian polynomials for  �, !� and "�:  � = ����  � = ���� + ����  � = ���� + ���� + ����  $ = ���$ + ���� + ���� + �$�� 

      ⋮ 
 

 

 

(8) 
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!� = ���� !� = ���� + ���� !� = ���� + ���� + ���� !$ = ���$ + ���� + ���� + �$�� 

      ⋮ 
 

 

 

(9) "� = ���� "� = ���� + ���� "� = ���� + ���� + ���� "$ = ���$ + ���� + ���� + �$�� 

      ⋮ 
 

 

 

(10) 

The system of nonlinear differential equations from (4) can be expressed as:  

&'(
')���
 − ��0
 = ����� � ��

�
��� + ���
� �  �

�
��� + ����� � "�

�
������
 − ��0
 = ����� � ��

�
��� + ���
� � !�

�
��� + ����� � "�

�
���

� 
 

 

 

(11) 

&'(
')� ��

�
��� = ��0
 + ����� � ��

�
��� + ���
� �  �

�
��� + ����� � "�

�
���� ��

�
��� = ��0
 + ����� � ��

�
��� + ���
� � !�

�
��� + ����� � "�

�
���

� 
 

(12) 

With initial values ��0
 = ��, ��0
 = ��, we can find the solution of the system. The iterations 

are determined by the following recursive formulas:       �� = ��0
 = �� , 
      ��,� = ������� + ���
� � + �����"� ,  

(13)        �� = ��0
 = �� ,        ��,� = ������� + ���
�!� + �����"� . (14) 

In this paper, we use 7-term approximations to find the solution to the system. The solution is 

defined by - and . as - =  �� + �� + �� + �$ + �/ + �/ + �0 + �1 , (15) . =  �� + �� + �� + �$ + �/ + �2 + �0 + �1 . (16) 

4.  Numerical results 

For computational experiments in this section, we assume to have initial values ��0
 = �� = 4 and ��0
 = �� = 10. We can determine the type of interaction between both populations from the signs of 

parameter values. We compute components of 7-term approximations using the computer algebra 

package Maple. The interaction between populations can be mutualism, parasitism, and competition. 

 

4.1. Mutualism interaction 

Given that �� = 0.1; �� = 0.08; 
� = −0.0014; 
� = −0.001; �� = 0.0012; �� = 0.0009; and �� = 4 and �� = 10.  

We obtain: �� = 0.4256000000� , �� = 0.7360000000� , �� = 0.02321664000��, �� = 0.02532000000��, �$ = 0.0008613579093�$, 
(17) 
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�$ = 0.0005198410667�$, �/ = 0.00002377241892�/, �/ = 0.00000715508705�/, �2 = 4.762365706 ∗ 10^�−7
�2, �2 = 1.122902100 ∗ 10^�−7
�2, �0 = 4.92081361 ∗ 10^�−9
�0, �0 = 3.924828700 ∗ 10^�−9
�0, �1 = −9.99735783 ∗ 10^�−11
�1, �1 = 1.355344556 ∗ 10^�−10
�1. 
4.2. Parasitism interaction 

Given that �� = 0.1; �� = 0.08; 
� = −0.0014; 
� = −0.001; �� = 0.0012; �� = −0.0009; and �� = 4 and �� = 10.  

We obtain: �� = 0.4256000000� , �� = 0.6640000000� , �� = 0.02304384000��, �� = 0.01680960000��, �$ = 0.0008296779093�$, �$ = 0.0000151441067�$, �/ = 0.00002079741808�/, �/ = −0.00001228646758�/, �2 = 2.877838352 ∗ 10^�−7
�2, �2 = −4.066091675 ∗ 10^�−7
�2, �0 = −3.968167659 ∗ 10^�−9
�0, �0 = −5.050637136 ∗ 10^�−9
�0, �1 = −4.223308270 ∗ 10^�−10
�1, �1 = 8.804344521 ∗ 10^�−11
�1. 

(18) 

4.3. Competition interaction 

Given that �1 = 0.1; �2 = 0.08; 
1 = −0.0014; 
2 = −0.001; �1 = −0.0012; �2 = −0.0009; and �� = 4 and �� = 10.  

We obtain: �� = 0.3296000000� , �� = 0.6640000000� , �� = 0.01106304000��, �� = 0.01724160000��, �$ = 0.0001173886293�$, �$ = 0.0000783313067�$, �/ = −0.000004301207450�/, �/ = −0.000007815319423�/, �2 = −1.851824568 ∗ 10^�−7
�2, �2 = −2.136855195 ∗ 10^�−7
�2, �0 = −1.635576185 ∗ 10^�−9
�0, �0 = −7.0058057 ∗ 10^�−9
�0, �1 = 8.190722735 ∗ 10^�−11
�1, �1 = 1.240343622 ∗ 10^�−10
�1. 

(19) 

We find the solution to the system for each initials conditions. Approximate solutions for both 

populations are given by: 
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- =  �� + �� + �� + �$ + �/ + �/ + �0 + �1 , . =  �� + �� + �� + �$ + �/ + �2 + �0 + �1 . 
Approximate solutions for mutualism interaction are given by: -1 = 4 + 0.4256000000 ∗ � + 0.02321664000 ∗ �� + 0.0008613579093 ∗ �$+ 0.00002377241892 ∗ �/ + 4.762365706 ∗ 10�1 ∗ �2 + 4.92081361 ∗ 10�? ∗ �0− 9.99735783 ∗ 10��� ∗ �1, .1 =  10 + 0.7360000000 ∗ � + 0.02532000000 ∗ �� + 0.0005198410667 ∗ �$+ 0.00000715508705 ∗ �/ + 1.122902100 ∗ 10�1 ∗ �2 + 3.924828700 ∗ 10�?∗ �0 + 1.355344556 ∗ 10��� ∗ �1. 
 

Approximate solutions for parasitism interaction are given by: -2 = 4 + 0.4256000000 ∗ � + 0.02304384000 ∗ �� + 0.0008296779093 ∗ �$+ 0.00002079741808 ∗ �/ + 2.877838352 ∗ 10�1 ∗ �2 − 3.968167659 ∗ 10�?∗ �0 − 4.223308270 ∗ 10��� ∗ �1, .2 = 10 + 0.6640000000 ∗ � + 0.01680960000 ∗ �� + 0.0000151441067 ∗ �$− 0.00001228646758 ∗ �/ − 4.066091675 ∗ 10�1 ∗ �2 − 5.050637136 ∗ 10�?∗ �0 + 8.804344521 ∗ 10��� ∗ �1. 
 

Approximate solutions for competition interaction are given by: -3 = 4 + 0.3296000000 ∗ � + 0.01106304000 ∗ �� + 0.0001173886293 ∗ �$− 0.000004301207450 ∗ �/ − 1.851824568 ∗ 10�1 ∗ �2 − 1.635576185 ∗ 10�?∗ �0 + 8.190722735 ∗ 10��� ∗ �1, .3 = 10 + 0.6640000000 ∗ � + 0.01724160000 ∗ �� + 0.0000783313067 ∗ �$− 0.000007815319423 ∗ �/ − 2.136855195 ∗ 10�1 ∗ �2 − 7.0058057 ∗ 10���∗ �0 + 1.240343622 ∗ 10��� ∗ �1. 
 

 

 

 

 

  
(a). Solution for the first population -1. (b). Solution for the second population .1. 

Figure 1. Solutions for both populations with mutualism interaction. 
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(a). Solution for the first population -2. (b). Solution for the second population .2. 

Figure 2. Solutions for both populations with parasitism interaction. 

 

 

 

 

 

 

 

 

 

  
(a). Solution for the first population -3. (b). Solution for the second population .3. 

Figure 3. Solutions for both populations with competition interaction. 
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Table 1. Population dynamics for both species obtained using the Adomian decomposition method. � 
Mutualism interaction Parasitism interaction Competition interaction -1 .1 -2 .2 -3 .3 

0 4.000000 10.00000 4.000000 10.00000 4.000000 10.00000 

0.1 4.042793 10.07385 4.042791 10.06657 4.033071 10.06657 

0.2 4.086056 10.14822 4.086048 10.13347 4.066363 10.13349 

0.3 4.129793 10.22309 4.129777 10.20071 4.099879 10.20075 

0.4 4.174010 10.29848 4.173981 10.26829 4.133617 10.26836 

0.5 4.218713 10.37440 4.218666 10.33620 4.167580 10.33632 

0.6 4.263907 10.45083 4.263838 10.40445 4.201767 10.40462 

0.7 4.309597 10.52779 4.309501 10.47304 4.236180 10.47327 

0.8 4.355790 10.60527 4.355661 10.54196 4.270819 10.54227 

0.9 4.402489 10.68329 4.402324 10.61122 4.305684 10.61162 

1 4.449702 10.76185 4.449495 10.68081 4.340776 10.68131 

 

Illustration of the solutions for all three cases are shown in Figure 1, Figure 2, and Figure 3. 

Numerical results are representatively given in Table 1. From these results, the Adomian 

decomposition method is successful in solving the population dynamics model. These results 

compared with the Runge-Kutta numerical solutions lead to the discrepancy of order lower than 10�0. 
This means that solutions obtained using the Adomian decomposition method are very accurate. 

5.  Conclusion 

We have solved the population dynamics model and for three different sets of parameters for 

mutualism, parasitism, and competition. The Adomian decomposition method is meshless, so we can 

obtain approximate solution simply from the explicit solutions. It gives approximate solutions at every 

time value without any discretisation of the time domain. This is an advantage of using the Adomian 

decomposition method to solve the problem. 
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