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Abstract. This paper applies the variational iteration method for solving systems of nonlinear 

ordinary differential equations. The model under consideration in this work is the population 

dynamics model of two species. Our results show that the variational iteration method provides 

formulas to approximate the exact solution at every time value with a very cheap computation. 

1.  Introduction 
Systems of differential equations do not only have important roles in mathematics, but they also play 

essential roles in other fields of study, such as economics, physics, biology, computer sciences etc. [1-

3]. Furthermore, non-linear phenomena often occurs in real problems. A system of non-linear ordinary 

differential equations are ordinary differential equations which satisfy that the unknown functions only 

rely on one independent variable and fulfill at least one of the following requirements: consists of 

dependent variables and/or derivatives to the power of except one, contains multiplication of 

dependent variable and/or its derivatives. 

In biology, differential equations occur in the model of population growth. This paper solves 

systems of non-linear ordinary differential equations. In particluar, we solve the population dynamics 

model of two species with the variational iteration method. 

Variational iteration method has been a well-known technique to solve mathematical equations [4-

9]. It is an analytical approach to solving differential equations. Its greatest advantages are that the 

method is meshless, the solution is an explicit function, and the iterations are convergent to the exact 

solution very rapidly. Readers interested in other type of meshless method are referred to the Adomian 

decomposition method [10-12]. 

The paper is written in the following structure. In Section 2, we write the population dynamics 

model, which is the problem that we want to solve. The variational iteration method to solve the model 

is presented in Section 3. Computational results are provided in Section 4. We conclude the paper with 

some remarks in Section 5. 

2.  Population dynamics model 
This section provides the general form of the model of the population dynamics of two species: ��

�� = ���� + 	�� + 
��� , (1) 
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��
�� = ���� + 	�� + 
��� , (2) 

where: 

• � represents the population of the first species, 

• � represents the population of the second species, 

• �� is constant denoting the intrinsic growth rate of species �, 

• �� is constant denoting the intrinsic growth rate of species �, 

• 	� is constant denoting the rate of the declining in growth of species � due to the increase in 

the population of species �, 

• 	� is constant denoting the rate of the declining in growth of species � due to the increase in 

the population of species �, 

• 
� is constant denoting the growth rate of the species � due to interaction with species �, 

• 
� is constant denoting the growth rate of the species � due to interaction with species �. 

The free variable is time �. A predator and prey model related to equations (1)-(2) can be found in the 

work of Sharma and Samanta [13]. 

3.  Variation iteration method 
Variational iteration method consists of three basic concepts, that is: the correction functionals, the 

restricted variations, and the Lagrange multipliers. For the variational iteration method, in this section 

we follow the work of Batiha et al. [4]. Details of the original method can be found in the work of 

Wazwaz [14]. 

As an illustration of the basic concept of the variational iteration method, we are given the 

following non-linear differential equations: 

�� + �� = ���� , (3) 

with � is linear operator, � is non-linear operator, and ���� is a function. Variational iteration 

method can be established and analysed using a correction functional as follows: 

������� = ����� + � �����
�

������� + ������� − ������� (4) 

with � is a Lagrange multiplier, �� is an approximate solution at the �-th interation, ��� is the 

restricted variation with  ��� = 0, and   is a variational derivative [4]. 

System (1)-(2) can be rewritten as follows: ��
�� = ��� + 	��� + 
���, (5) 

��
�� = ��� + 	��� + 
���. (6) 

The correction functionals of the system (5)-(6) are 

������� = ����� + � ���#�$
�

%����#�
�# − �����#� − 	������#� − 
�����#�����#�& �#, (7) 

������� = ����� + � ���#�$
�

%����#�
�# − �����#� − 	������#� − 
�����#�����#�& �#, (8) 

where ��� and ��� is the restricted variations with  ��� = 0 and  ��� = 0. From equations (7) and (8) we 

obtain 

 ������� =  ����� +  � ���#�$
�

%����#�
�# − �����#� − 	������#� − 
�����#�����#�& �#  

                   =  ����� +  � ���#�$
�

%����#�
�# − �����#�& �# , (9) 
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 ������� =  ����� +  � ���#�$
�

%����#�
�# − �����#� − 	������#� − 
�����#�����#�& �#  

                   =  ����� +  � ���#�$
�

%����#�
�# − �����#�& �# . (10) 

Using integration by parts, equation (9) becomes 

 ������� =  ����� +  '���#����#� − � ��( �#����#�$
�

�# − � ���#������#�$
�

�#)  

                  = *1 + �����, ����� −  � ���( �#����#� + �����#����#��$
�

�# ,  

                  = *1 + �����, ����� −  � -*��( �#� + �����#�,���#�.$
�

�# . (11) 

Using integration by parts, equation (10) becomes 

 ������� =  ����� +  '���#����#� − � ��( �#����#�$
�

�# − � �����#����#�$
�

�#)  

                   = *1 + �����, ����� −  � ���( �#����#� + �����#����#��$
�

�#  

                   = *1 + �����, ����� −  � -*��( �#� + �����#�,���#�.$
�

�#. (12) 

The Lagrange multipliers ����� and ����� can be obtained by solving the following system as the 

stationary conditions: 

1 + ����� = 0 , /��( �#� + �����#�|12$ = 0, (13) 

1 + ����� = 0 , /��( �#� + �����#�|12$ = 0. (14) 

Therefore, the Lagrange multipliers are ����� = −3456�14$� and ����� = −3457�14$�. The solution to 

system (1)-(2) in linearized forms (taking 	� = 	� = 
� = 
� = 0) is as follows: 

���� = 8�356$ , (15) 

���� = 8�357$ . (16) 

The variational iterations for system (1)-(2) with ����� = −3456�14$� and ����� = −3457�14$� is 

given by: 

������� = ����� + � −3456�14$�$
�

%����#�
�# − �����#� − 	�����#� − 
����#����#�& �# , (17) 

������� = ����� + � −3457�14$�$
�

%����#�
�# − �����#� − 	�����#� − 
����#����#�& �# . (18) 

Equations (17) and (18) compute the series of solutions to the population dynamics model of two 

species. The series converges to the exact solution. 

4.  Computational results 

From the previous section, values of 8� and 8� can be obtained from the initial value. We assume that ��0� = 4 and ��0� = 10. We obtain 8� = 4 and 8� = 10. Therefore, ����� = 4356$ and ����� =10357$. 

In this section, we provide variational iteration solutions to examples of mutualism, parasitism, and 

competition of two species. 
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4.1. Mutualism model 

Below are given the solution of the system (1)-(2) the model of mutualism using the variational 

iteration method. We assume that �� = 0.1; �� = 0.08; 	� = −0.0014; 	� = −0.001; 
� =0.0012; 
� = 0.0009.  

Then the variational iteration solutions up to ����� and ����� are as follows: 

����� = 3.6243�.�$ − 0.2243�.�$ + 0.63�.�@$, (19) 

����� = 10.893�.�@$ + 0.363�.�@$ − 1.253�.�B$, (20) 

����� = 3.6095157853�.�$ − 0.1838672643�.�$ + 0.59198043�.�@$
− 0.041388799973�.�@$ + 0.00099839999973�.D@$ + 0.015033�.�B$
− 0.003753�.DE$ + 0.00035076923073�.DB$ − 0.00023415466673�.E$
+ 0.0113648643�.D$, 

(21) 

����� = 11.000458523�.�@$ + 0.355188243�.�@$ − 1.482401253�.�B$
+ 0.170156253�.�E$ − 0.0065104166673�.D�$ − 0.005106243�.�@$
− 0.000241923�.D@$ − 0.033540000013�.�B$
+ 0.00086538461533�.DE$ + 0.0011314285713�.DB$. 

(22) 

 

  
(a). Solution for the first species  

of the mutualism model. 

(b). Solution for the second species  

                  of the mutualism model. 

Figure 1. Graphics of solutions to the mutualism model: (a). �D���, (b). �D��� with 0 ≤ � ≤ 34. 

Representatives of the solutions for the mutualism model are plotted in Figure 1 for �D��� and �D���. We do not write �D��� and �D��� in this paper, because the formulas are too long. In Figure 1, 

we observe that due to mutualism, populations of both species increase with respect to time at initial 

stages of the interaction. 

4.2. Parasitism model 

Below are given the solution of the system (1)-(2) for parasitism model using the variational iteration 

method. We assume that �� = 0.1; �� = 0.08; 	� = −0.0014; 	� = −0.001; 
� = 0.0012; 
� =−0.0009.  

Representatives of the series of variational iteration solutions are: 

����� = 3.6243�.�$ − 0.2243�.�$ + 0.63�.�@$, (23) 

����� = 11.613�.�@$ − 0.363�.�@$ − 1.253�.�B$, (24) 
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����� = 3.5869096323�.�$ − 0.1838672643�.�$ + 0.63111963�.�@$
− 0.0016430769233�.DB$ − 0.05985923�.�@$ + 0.00168963�.D@$
+ 0.018273�.�B$ − 0.003753�.DE$ − 0.00023415466673�.E$
+ 0.011364863993�.D$, 

(25) 

����� = 11.838619293�.�@$ − 0.378671763�.�@$ − 1.684901253�.�B$
+ 0.181406253�.�E$ − 0.0065104166673�.D�$
+ 0.00066857142853�.DB$ + 0.017573763�.�@$ − 0.000241923�.D@$
+ 0.034259999993�.�B$ + 0.00086538461533�.DE$. 

(26) 

 

 

  
(a). Solution for the first species  

of the parasitism model. 

(b). Solution for the second species  

                  of the parasitism model. 

Figure 2. Graphics of solutions to the parasitism model: (a). �D���, (b). �D��� with 0 ≤ � ≤ 32. 

 

Representatives of the solutions to the parasitism model are plotted in Figure 2 for �D��� and �D���. 

In this figure we observe that due to parasitism, one of the population decreases respect to time. This 

then is followed by the other population. Again we do not write �D��� and �D��� in this paper, because 

the formulas are too long. 

 

4.3. Competition model 

Below are given the solution to the system (1)-(2) for the competition model using the variational 

iteration method.  We assume that �� = 0.1; �� = 0.08; 	� = −0.0014; 	� = −0.001; 
� =−0.0012; 
� = −0.0009.  

Representatives of the series of the variational iteration solutions are: 

����� = 4.8243�.�$ − 0.2243�.�$ − 0.63�.�@$, (27) 

����� = 11.613�.�@$ − 0.363�.�@$ − 1.253�.�B$, (28) 

����� = 4.9892574473�.�$ − 0.3257936643�.�$ − 0.84009959993�.�@$ − 0.003753�.DE$
− 0.0042276923073�.DB$ + 0.073939199973�.�@$ − 0.00168963�.D@$
+ 0.0151280643�.D$ − 0.00023415466673�.E$ + 0.097473�.�B$, (29) 
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����� = 11.891484173�.�@$ − 0.504059763�.�@$ − 1.684901253�.�B$
+ 0.181406253�.�E$ − 0.0065104166673�.D�$ − 0.0060576923073�.DE$
− 0.0020571428573�.DB$ + 0.019517763�.�@$ − 0.000241923�.D@$
+ 0.111423�.�B$. 

(30) 

 

  
(a). Solution for the first species  

   of the competition model. 

(b). Solution for the second species  

                  of the competition model. 

Figure 3. Graphics of solutions to the competition model: (a). �D���, (b). �D��� with 0 ≤ � ≤ 30. 

 

 

Representatives of the solutions to the competition model are plotted in Figure 3 for �D��� and �D���. Once again, we do not write �D��� and �D��� in this paper, because the formulas are too long. 

For small time, both populations increase with respect to time.  

 

Numerical computations for all three cases (mutualism, parasitism, and competition) are given in 

Table 1. We have compared with these results with the second order Runge-Kutta numerical method. 

These results are very accurate, as the discrepancy is less than 104B. 
 

 

Table 1. Numerical results from the variational iteration method based on the given examples. 

� 
Mutualism model Parasitism model Competition model 

����� ����� ����� ����� ����� ����� 

0.0 4.000000000 10.00000000 4.000000000 10.00000000 4.000000000 10.00000000 

0.1 4.042793029 10.07385374 4.042791267 10.06656813 4.033070759 10.06657252 

0.2 4.086055587 10.14821700 4.086048406 10.13347257 4.066363553 10.13349044 

0.3 4.129792919 10.22309301 4.129776450 10.20071348 4.099879151 10.20075432 

0.4 4.174010333 10.29848492 4.173980487 10.26829093 4.133618314 10.26836475 

0.5 4.218713190 10.37439597 4.218665655 10.33620501 4.167581809 10.33632224 

0.6 4.263906918 10.45082936 4.263837141 10.40445571 4.201770394 10.40462736 

0.7 4.309596990 10.52778838 4.309500171 10.47304310 4.236184811 10.47328059 

0.8 4.355788954 10.60527627 4.355660046 10.54196712 4.270825824 10.54228248 

0.9 4.402488408 10.68329631 4.402322086 10.61122779 4.305694169 10.61163354 

1.0 4.449701012 10.76185184 4.449491688 10.68082503 4.340790588 10.68133427 
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5.  Conclusion 
Based on the research that has been done, it can be concluded that the variational iteration method can 

be used to find the solution of the population dynamics model of two species accurately. The 

population dynamics model of two species being researched is a system of non-linear ordinary 

differential equations of the first order with initial values. The variational iteration method gives 

approximate solutions at every time value without any discretisation of the time domain. The iteration 

formulas are simple. Therefore, they are easy to compute in solving population dynamics models. 
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