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Abstract. We consider the spatially-varying Burgers equation in one dimension. We take the 
Lax–Friedrichs finite volume method and Jin–Xin relaxation method in solving the equation. 
According to our research, the Jin–Xin relaxation method produces a more accurate solution, 
as they produce smaller error than the Lax–Friedrichs finite volume method. However, the 
Lax–Friedrichs finite volume method is faster in computation than the Jin–Xin method. 

1.  Introduction 
A partial differential equation is an equation which contains its partial derivatives involving two or 
more independent variables. There are a large number of examples of partial differential equations in 
mathematical modelling, such as shallow water wave equations [1-3], advection equations [4-5], gas 
dynamics [6], elasticity equation [7] and Burgers equation [8]. 

In this paper, we focus on numerical solutions �(�, �) to the spatially-varying Burgers equation in 
one dimension with the flux function depends on the space variable � and time variable �, where the 
flux function is of the form �(�, �) = 
(�)�(�) for some function �. Details of this problem is found 
in the work of Prnić [9]. 

A number of numerical methods are available in the literature, as computer simulations are desired 
for large scale computations [10-12]. In this paper numerical methods are used to solve the spatially-
varying Burgers equation. We focus on the Lax–Friedrichs finite volume method [4-5] and Jin–Xin 
relaxation method [13-14]. We choose Lax–Friedrichs finite volume method because of its simplicity. 
The Jin–Xin relaxation method offers linearity in the model, so they are easy to compute. The main 
task is to compare our results between the Lax–Friedrichs finite volume method and Jin–Xin 
relaxation method. We research for which method resulting in better performance than the other. 

The paper structure is as follows. Section 2 writes the mathematical model that we want to solve. 
Section 3 presents numerical methods that we use to solve the model. Section 4 provides numerical 
results. Conclusion is drawn in Section 5. 

2.  Problem formulation 
We consider the spatially-varying Burgers equation in one dimension 

��
�� + �(
(�)�(�))

�� = 0 , (1) 

where 
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�(�) =  ��

2  , (2) 

and 


(�) = 1
1 + �� . (3) 

The initial condition for � > 0 is 

�(�, 0) = 1
√1 + ��  . (4) 

Here � is the space variable, � is the time variable, � is the conserved quantity and �(�, �) =

(�)�(�) is the flux function. The boundary condition is supposed to be known. 

3.  Numerical methods 
Numerical methods that we use in this paper are the Lax–Friedrichs finite volume method and Jin–Xin 
relaxation method. 

3.1. Lax–Friedrichs finite volume method 

Burgers equation (1) can be written in a compact form as  

�� + [
 �(�)]� = 0 . (5) 

Equation (5) is solved using the finite volume method with an explicit numerical scheme 

����� = ��� − Δ�
Δ�  ���!

"
� − ��#!

"
� $ (6) 

where ��� ≈ �(��, ��) is an approximation of the conserved quantity and ����/�� ≈ �'�(����/�, ��)( is 
the flux function (see LeVeque [4-5]). Here Δ� is the time step, Δ� is the cell-width, ) is defined as the 
index of space and * is the index of time. Formulas for calculation of fluxes in equation (6) using the 
Lax–Friedrichs finite volume method are given by 

     ���!
"

� = 1
2 [
��� �(����� ) + 
� �( ���)] − Δ�

2Δ� (����� − ���) , (7) 

and 

     ��#!
"

� = 1
2 [
� �( ���) + 
�#� �( ��#�� )] − Δ�

2Δ� (��� − ��#�� ) . (8) 

3.2. Jin–Xin relaxation method 

The Jin–Xin relaxation system for equation (1) is 
��
�� + �+

�� = 0 , (9) 

and 
�+
�� + , ��

�� = − 1- (+ − 
 �(�)) , (10) 

where + is an artificial variable defined by + = 
 �(�), with , is a positive constant of the relaxation 
system which can be given by , = 
 (�′(�))� and - is a small positive constant. 

Equations (9) and (10) with the discretised space can be written as 
�
�� �� + 1

Δ�  +��!
"

− +�#!
"
$ = 0 , (11) 

and 
�
�� +� + 1

Δ� ,  ���!
"

− ��#!
"
$ = − 1- (+� − 
 �(��)) . (12) 
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Furthermore, the first order fully explicit scheme of the Jin–Xin relaxation method (refer to Jin and 
Xin [13]) to solve the Burgers equation is 

����� = ��� − Δ�
2Δ� /+���� − +�� − √, (����� − 2��� + ��#�� )0 , (13) 

and 

+���� = +�� − Δ�
2Δ� /, (����� − ���) − √, (+���� − 2+�� + +�#�� )0 − 1

- '+�� − 
 �(���)( . (14) 

In this paper, we have used the Euler's time stepping method [15] for the integration with respect to 
the time variable. 

4.  Numerical results 

In this section we present our research results and give some discussion. All quantities are assumed to 
have SI units. 

4.1. Results of the Lax–Friedrichs finite volume method 

For computation in the Lax–Friedrichs finite volume method, we take � ∈ [0,2] with cell width 
Δ� = 0.02. We calculate the numerical solution from the initial time � = 0 until the final time � = 1.5 
with time step Δ� = 0.5Δ�. For the initial condition we assume �(�, 0) = 1/√1 + �� . The boundary 
condition at the left-end is �(0, �) = 1/(1 + �), and at the right-end �(2, �) is set to be transmissive. 
The flux function for the Burgers equation here is �(�, �) = 
(�)�(�) where 
(�) = 1/(1 + ��) and 
�(�) = ��/2 . 
 

 
Figure 1. Numerical solutions produced using the Lax–Friedrichs finite volume method at � = 1.5. 

 
 

We obtain that the Lax–Friedrichs finite volume method is fast in computation. The Lax–Friedrichs 
finite volume method only needs 21.4 seconds to compute numerical solutions, even though this 
running time can still be optimised. Numerical solution of the Lax–Friedrichs finite volume method is 
shown in Figure 1. 
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4.2. Results of the Jin–Xin relaxation method 

Using the Jin–Xin relaxation method, we compute from the starting point � = 0 to final point � = 2 
with cell width Δ� = 0.05. We compute the solution from the initial time � = 0 until the final time 
� = 1.5 with time step Δ� = 0.01Δ�. The initial and boundary conditions are the same as the previous 
simulation. The small positive constant (relaxation rate) that we used here is - = 10#3.   
 

 
Figure 2. Numerical solutions produced using the Jin–Xin relaxation method at � = 1.5. 

 

The Jin–Xin relaxation method needs 300.0 seconds to compute numerical solutions. But if we 
choose Δ� too big, then the method becomes unstable. Numerical results of the Jin–Xin relaxation 
method are shown in Figure 2 giving similar behaviour to that of the Lax–Friedrichs results. 

5.  Conclusion 
According to our research, the Lax–Friedrichs finite volume method is faster than the Jin–Xin 
relaxation method in the computation. However, the Jin–Xin relaxation method is easy to compute due 
to its linear approach. With these results, we suggest that researchers should be aware of these trade-
off when they want to take one of these two methods to solve the spatially-varying Burgers equation. 
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