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Abstract. In this paper, we solve a one dimensional blood flow model in human artery. This
model is of a non-linear hyperbolic partial differential equation system which can generate
either continuous or discontinuous solution. We use the Lax—Friedrichs finite volume method
to solve this model. Particularly, we investigate how a pulse propagates in human artery. For
this simulation, we give a single sine wave with a small time period as an impluse input on the
left boundary. The finite volume method is successful in simulating how the pulse propagates
in the artery. It detects the positions of the pulse for the whole time period.

1. Introduction

Blood is one of body components which has important functions. One of blood functions is to
distribute the nutritions to all human body tissues. In some cases, blood flow may be hindered because
of some problems, such as plugging and artery cavity stiffening [1-2]. It is a dangerous condition that
must be overcome. In this case, medical treatment can affect the blood flow pattern. Blood flow in
human artery can be represented in a mathematical model. We can investigate blood flow patterns
from the solution of its model [3-5]. Numerical methods are considered, as they are powerful [6-8] to
solve mathematical models.

In this paper, our focusses are to find and simulate numerical solution of the one dimensional blood
flow model in human artery. There are a number of methods which can be used to solve this model,
but we use the Lax—Friedrichs finite volume method [9-12] because of its simplicity. Moreover, finite
volume methods can be used to find either continuous or discontinuous solution [13-14].

The paper is organised as follows. Section 2 gives the problem that we want to solve. Research
method is presented in Section 3. Numerical results are provided in Section 4. Conclusion is drawn in
Section 5.

2. Problem formulation
In this section, we describe the problem of blood flow in human artery, which we want to solve.

We consider a straight cylindrical tube with circular cross section and z coordinate is the axis of
cylinder (see Figure 1). The one dimensional blood flow model for human artery [2] is

A 8Q
Pl T 1
6t2+az 0, (D

00 9 ( Q*\ Adp Q

E*&( 7)*;5“@2—0' @
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for z € (0,1) and t > 0, where A, Q, and p are the cross section area of artery, the blood discharge,
and the blood pressure, respectively. In addition, o is the velocity function in every cross section
artery which is assumed as a constant (in this paper we set its value equals to one), p is the density of
blood, Ky is the coefficient which relates to the blood viscosity, z is the space variable, and ¢ is the
time variable.

Figure 1. [lustration of human artery.

In this model, there are three dependent variables (4, @, dan p) and two equations. In order to have
two equations with two unknowns, we define a relation that links the blood pressure with the cross

section area of artery
p =pext+ﬂ(\/z_\/‘40)- (3)

Here p,,: is the external pressure and A is the artery cross section area at initial time t = 0. In this
paper, Pext 1s assumed to be zero and Ag is constant. Furthermore, f§ is a parameter relating to the
artery wall elastic properties:

4\hoE(2)

4
34 4)

B(z) =

where E(z) is the elastic Young’s modulus.

3. Numerical method
In this section, we explain the finite volume method for solving blood flow model (1)-(2). We use the
flux formulation of Lax—Friedrichs [9].

To find numerical solutions of this blood flow model, let us consider the space domain
discretisation (as shown in Figure 2) where Az = z;,1/, — 21/ or Az = z; — z;_4, and the time

domain discretisation t™ = n At for integers n.

Z. 3 Z. Z. 1 Z.

i— i—- i+= i+
i [
« 1 O @ 1 @
Zi-1 Z Zi+1
Figure 2. [lustration of space domain discretisation.
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From equation (3), we obtain

dp 0
— = A— /A
o 3,[23 (ﬂ(\/_,[? 00)) g 1
1 1 0A 1
=—A2+-A 2———A4A2.
dz’" + 2% %9, dz o
If we multiply both sides of the previous equation with A/p , we get
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3
5 1
ﬂk_%ﬁ+ﬁﬁ%_mwz )

pdz dzp 2pdz pdz Ay
We note that f is a function of z, and A is a function of Z and t. Therefore, we have

3 1
d [ BAz A dp dﬂ Az ﬂ A20A Adp
9 ( Ny /—0) 4208 _A4p
dz\ 3p pdz dzp Zp Jz pdz
From equations (5) and (6), we get

3
Adp 0 [ Az Ad,B
pdz dz\ 3p pdz

A2 (6)

Y- m)

Based on equation (7), equation (2) can be rewritten as

0Q 09 (Q* p 3 Q A dﬂ
TR B T - _ [A. —Z 8
6t+az<A-|—3pA2 ( \/_) ®
From the above derivation, blood flow moclel (1)—(2) are balance laws in the form of
7 + f (9), = 5(9) )
where the conserved quantities, flux functions, and source terms are
Q

A

<lahro-lgssifmo- g te(m-ta)
respectively.

Using the finite volume framework, we assume that V* =~ #(z;, t"), f(V/*) = f (ﬁ(zi, t")), and
S =~ 5(7(z;,t™)). We define the following vectors

Q¢
| 3| and S = QL Andﬁ
7 =[G 7o - @)y £ gz % F+ e (VAo -VA")]
The fully discrete finite volume method [9] to get the numerical solutlon to balance laws (9) is

_ At _ i,
vt =t - — (F”l - Fi’il> + At ST, (10)
2 2

Az \ i+
with the definition of the Lax—Friedrichs flux

fURD)+fWD Az

F:—l - 2 (Vzﬁ-l Vin) ) (1)
and
— fFM+ 7, 1) Az
no= n_yny. 12
Fi—; 2 2At (V Vit (12)

From the finite volume scheme (10)-(12), we get the numerical scheme for blood flow model (1)-
(2) as follows. The numerical scheme for equation (1) is

At
ATt = A7 - E(ﬂﬁz - Fﬁl) : (13)
2 2
with the definition of Lax—Friedrichs fluxes
1
"y =2 Qs + Q) — 5 (s — A1), (14)
and
(QL + Ql 1) (An A?—l) . (15)
In addition, the numerical scheme for equation (2) is
At Ald
= Qn ——(:F” Ti"_l)+At< KRj; —+ ﬁ(,/ - A")> (16)
2
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with the definition of Lax—Friedrichs fluxes

n (Ql )2 B (Q )2 TL n
?l‘l'— 2 A;L;ll 9 - (Al+1) + A + _( ) ] (Ql+1 L ) 4 (17)
and
. 1[@M* B Qr)* B 3 n
T"‘i =2 an + —(A ) + AT, + —( L1)? ] AT (Ql Qi~1)- (18)

We are now ready to present our results of numerical s1mulations of the blood flow model.

4. Numerical simulation
In this section, we investigate how a pulse propagates in human artery. Numerical settings, initial and
boundary conditions are taken as follow.

4.1. Numerical settings

For this numerical simulation, we take [ = 15 cm and t € [0,0.035] second. Figure 3 shows the layout
of numerical simulations. We set E as a constant, so it implies £ is a constant. It means that the value
of E and B do not change for all z € (0, ). So, the value of dfi/dz equals to zero. And then, we take
Az = 0.005, and At = 0.002Az. As long as At satisfies the Courant—Friedrichs—Lewy (CFL)’s
condition, the method will be stable.

cel

Figure 3. A layout of human artery for numerical simulation.

We investigate at the three monitoring points (P, M, and D) for the pressure variations, where
points P, M, and D are proximal, medium, and distal points, respectively. Consider that point P is the
nearest point from the heart and point D is the farthest point from the heart. Table 1 shows the values
of coefficients that we use in all simulations.

Table 1. Coefficients value for numerical simulation.

Coefficient Value

Blood density p 1 g/cm’
Young’s modulus E, 3x10° dyne/ cm®
Wall artery thickness h 0.05 cm

Initial cross section area A, 70.5% cm’
Blood viscosity Kg 107 dyne s/ cm’

4.2. Initial and boundary conditions

Given the initial values of A(z,0) = Ay, Q(z,0) =0, and p(z,0) = 0, for every z € (0,15). The
boundary values for this simulation is taken as follows. At the left boundary, we give an impluse input
in the form of a single sine wave with a small time period:

p(0,t) = 103- sin(

0.0025)' (19)
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For the left boundary value of A and Q, let us consider the characteristic variables of model (1)-(2)
which has been explained in [2]: W; and W, are given by

WZ=%— %ﬁ, (20)

Wy =W, +4 %( p+ﬁJA_o>, (21)
_ (P 2 (W, — Wy)*

s () B

- @ 23)

We set W, as a constant and equals to its initial value. And the last, for each right boundary value of
A, p and Q equals to the corresponding value of the nearest neighbour in the domain.

4.3. Numerical results
In this subsection, we summarise our numerical results.
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For this numerical simulation, where the elastic Young’s modulus is constant, the blood pressure is
directly propotional with the artery cross section area (see Figure 4 and Figure 6). Furthermore, the
blood pressure amplitude decreases with respect to time and space (see Figure 5 and Figure 7). We
infer that the decrease is influenced by the dissipation of the numerical method. We note that as the
cell width is taken smaller, the amplitude can be maintained almost the same as the original one, as
long as the solution is continuous.

S. Conclusion

Based on the numerical results, the form of pulse does not change but the amplitude decreases with
respect to time and space due to numerical dissipation. The dissipation can be small if the numerical
cell width is small. This research is limited to problems solved using the first order Lax—Friedrichs
finite volume method. Future work could extend the method to higher order ones.
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