Scopus	Search	Sources	Alerts	Lists	Help 🗸	pengguna ristekdik	ti63 🗸 📃
Source details						Feedback 🔪 C	ompare sources 🗲
ournal of Physics: Conference Serie	s					Visit Scopus Journal I	Metrics ∕
Open Access ⊕ Scopus coverage years: from 2005 to Present Publisher: IOP Publishing Ltd.	5					CiteScore 2015 0.35	C
ISSN: 1742-6588 Subject area: Physics and Astronomy						sjr 2015 0.211	C
Set document alert Journal Homepage						SNIP 2015 0.247	C

CiteScore 2015 Calculated on 31 May, 2016			6 CiteScore rank
0.35 =	Citation Count 2015 *Documents 2012 - 2014	5411 Citations 15451 Documents View CiteScore methodology > Citescore FAQ	In category: Physics and Astronomy Percentile: 19th Rank: #157/196 > View CiteScore trends >
"Citescore include	s an avaitable document types	View Citescore methodology > Citescore FAQ	View Citescore trends /
CiteScoreT	racker 2016 🛈		Last updated on <i>07 December, 2016</i> Updated monthly
0.01	Citation Count 2016	4877 Citations to date >	
0.31 =		15502 Documents to date >	

Home Search Collections Journals About Contact us My IOPscience

Runge-Kutta and rational block methods for solving initial value problems

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 J. Phys.: Conf. Ser. 795 012040

(http://iopscience.iop.org/1742-6596/795/1/012040)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 202.94.83.84 This content was downloaded on 11/02/2017 at 06:17

Please note that terms and conditions apply.

You may also be interested in:

Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD Miguel-Á. Aloy and Isabel Cordero-Carrión

On equations with infinitely many derivatives: integral transforms and the Cauchy problem Humberto Prado and Enrique G Reyes

The initial value problem of scalar-tensor theories of gravity Marcelo Salgado and David Martínez-del Río

Dynamics with infinitely many derivatives: the initial value problem Neil Barnaby and Niky Kamran

Theoretical limitations to the Hall acceleration mechanism in a Tokamak T D Arber

Twisting type-N vacuum solutions with two non-commuting Killing vectors do exist H Stephani and E Herlt

New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation

T E Simos

A time-dependent boundary value problem of the flow of noninteracting particles $\overline{\rm M}$ Y Yu and Chen-chi Chu

The influence of a semi-infinite atmosphere on solar oscillations Ángel De Andrea González

Runge-Kutta and rational block methods for solving initial value problems

Sudi Mungkasi and Agung Christian

Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University, Mrican, Tromol Pos 29, Yogyakarta 55002, Indonesia

E-mail: sudi@usd.ac.id, christian.0309@yahoo.com

Abstract. Three methods to solve initial value problems are considered. The methods are the first order Euler's, second order Heun's, and rational block methods. The Euler's and Heun's methods are of the Runge-Kutta type. Numerical results show that the rational block method is more robust than Runge-Kutta type methods in solving initial value problems.

1. Introduction

Mathematical models are very useful to solve real problems [1-4]. A class of mathematical models is ordinary differential equation (ODE). To solve ODEs in practice, we must have an initial condition and they form an initial value problem. There are a number of methods to solve initial value problems, such as Runge-Kutta methods and rational block methods.

In this paper, we solve initial value problems using the first order Runge-Kutta (Euler's) method, second order Runge-Kutta (Heun's) method and rational block method. Runge-Kutta methods are standard in the fields of numerical ODEs. The rational block method is a combination of rational methods [5]. In this work, we test the performance of the rational block method in comparison to Runge-Kutta methods. We note that the rational block method calculates approximate values of solution at two points in each iteration [6-9]. Runge-Kutta methods calculate approximate values of solution at one point in each iteration. A robust ODE solver is needed in the process of finding a more difficult problem, such as solving partial differential equations numerically [10-14].

The paper is structured as follows. We describe the problem formulation of the rational block method in Section 2. All three numerical methods to be tested are written in Section 3. Numerical results are presented in Section 4. The paper is concluded with some remarks in Section 5.

2. Problem formulation

We recall the general formulation of initial value problems using the rational block method [6-8].

Given the initial value problem:

$$y'(x) = f(x, y), \ y(a) = \eta$$
 (1)

where $f(x, y): \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m$ and the initial value problem (1) has a unique solution. In this paper we want to solve the initial value problem from the starting point to the final point. Therefore, we have to form the interval of integration. Let $x \in [x_0, x_b]$ and the interval $[x_0, x_b]$ is descretised for the numerical integration as $\{x_0, x_1, \dots, x_n, x_{n+1}, \dots, x_b\} \subset \mathbb{R}$.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

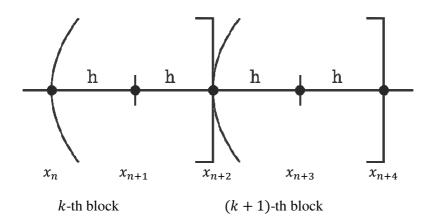


Figure 1. Discretisation of a 2-point explicit rational block method.

The discretisation in the rational block method makes a series of blocks with each point of these blocks is separated by a constant of step-size h, as shown in Figure 1 for a 2-point explicit rational block method. The k-th block contains three points, namely, x_n , x_{n+1} and x_{n+2} . We use y_n at x_n to calculate the approximate value y_{n+1} . Then, we use y_n and y_{n+1} to calculate the approximate value y_{n+2} . On this block, the calculation process is run in one iteration. That is, the rational block method calculates the approximate values y_{n+1} and y_{n+2} simultaneously in one iteration. Likewise, the (k + 1)-th block contains three points, namely, x_{n+2} , x_{n+3} and x_{n+4} . We use y_{n+2} at x_{n+2} to calculate the approximate value y_{n+3} . Then, we use y_{n+2} and y_{n+3} to calculate the approximate value y_{n+4} . Like in the k-th and (k + 1)-th blocks, we calculate the y value on the next blocks until at the point x = b is reached.

The discrete values of x are given by x_n , x_{n+1} and x_{n+2} as

$$x_n = x_0 + nh \tag{2}$$

$$x_{n+1} = x_0 + (n+1)h = x_n + h \tag{3}$$

$$x_{n+2} = x_0 + (n+2)h = x_n + 2h$$
(4)

where $h = \frac{x_b - x_0}{N}$ is a step-size or the distance from a point to the next one, N is the number of integration steps.

In rational block method, the solution of initial value problem (1) is locally given in the interval $[x_n, x_{n+1}]$ by the rational approximant

$$R(x) = \frac{a_0 + a_1 x}{b_0 + x}$$
(5)

where a_0 , a_1 and b_0 are unknown coefficients. In the calculation process, this rational approximant (5) passes through points (x_n, y_n) and (x_{n+1}, y_{n+1}) . To obtain the y_{n+1} value, we assume that the derivative values at x_n is given by $y'_n = f(x_n, y_n)$ and $y''_n = f'(x_n, y_n)$. Therefore, four equations must be satisfied as follows:

$$y_n = \frac{a_0 + a_1 x_n}{b_0 + x_n} \,, \tag{6}$$

$$y_{n+1} = \frac{a_0 + a_1 x_{n+1}}{b_0 + x_{n+1}} , \tag{7}$$

$$f_n = \frac{a_1 b_0 - a_0}{(b_0 + x_n)^2} \,, \tag{8}$$

$$f'_n = \frac{-2 \left(a_1 b_0 - a_0\right)}{\left(b_0 + x_n\right)^3} \,. \tag{9}$$

Equations (6)-(9) contain three unknown coefficients a_0 , a_1 dan b_0 . Eliminating these three unknown coefficients, we have

$$y_{n+1} = y_n + \frac{2h(f_n)^2}{2f_n - hf'_n} \,. \tag{10}$$

Equation (10) is a one-step second order rational method (see Lambert [5] for details). This method is a formula to calculate the approximate value y_{n+1} by using previous information at point (x_n, y_n) .

Furthermore, to calculate the approximate value y_{n+2} , we once again assume that the approximate solution to problem (1) is locally given in the interval $[x_n, x_{n+2}]$ by the rational approximant (5). In the calculation process, this rational approximant in equation (5) passes through points (x_n, y_n) , (x_{n+1}, y_{n+1}) and (x_{n+2}, y_{n+2}) . The derivative values at x_n and x_{n+1} are given by $y'_n = f(x_n, y_n)$ and $y'_{n+1} = f(x_{n+1}, y_{n+1})$. Therefore, five equations must be satisfied as follows:

$$y_n = \frac{a_0 + a_1 x_n}{b_0 + x_n} \tag{11}$$

$$y_{n+1} = \frac{a_0 + a_1 x_{n+1}}{b_0 + x_{n+1}} \tag{12}$$

$$y_{n+2} = \frac{a_0 + a_1 x_{n+2}}{b_0 + x_{n+2}} \tag{13}$$

$$f_n = \frac{a_1 b_0 - a_0}{(b_0 + x_n)^2} \tag{14}$$

$$f_{n+1} = \frac{a_1 b_0 - a_0}{(b_0 + x_{n+1})^2} \tag{15}$$

We notice that equations (11)-(15) contain four unknown coefficients a_0 , a_1 , b_0 and f_n . Eliminating these four unknown coefficients, we have

$$y_{n+2} = y_{n+1} + \frac{hf_{n+1}(y_{n+1} - y_n)}{2(y_{n+1} - y_n) - hf_{n+1}}.$$
(16)

Equation (16) is a two-step third order rational method (see Lambert [5] for details). This method is a formula to calculate the approximate value y_{n+2} by using previous information at points (x_n, y_n) and (x_{n+1}, y_{n+1}) .

The calculation of the rational block method is based on the rational approximant (5). By the elimination of unknown coefficients, we have formulas (10) and (16). These formulas are used to find

the approximate values y_{n+1} and y_{n+2} . If y_n value is known, the rational block method calculates the approximate value y_{n+1} using formula (10), and then it calculates the approximate value y_{n+2} using formula (16). This means that, in each block, the rational block method obtains the y_{n+1} and y_{n+2} values in one iteration.

3. Numerical method

We write three methods to solve the initial value problem (1). The methods are the first order Runge-Kutta (Euler's method), the second order Runge-Kutta (Heun's method) and the rational block method.

The first order Runge-Kutta (Euler's method) [1] has the iteration formula:

$$y_{n+1} = y_n + h f_n \,.$$

Here *h* is the step size.

The second order Runge-Kutta (Heun's method) [1] has the iteration formula:

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2),$$

where

$$k_1 = f(x_n, y_n) ,$$

and

$$k_2 = f(x_n + h, y_n + h k_1)$$

The rational block method is given by the iteration formulas:

$$y_{n+1} = y_n + \frac{2 h(f_n)^2}{2 f_n - h f_n'},$$

$$y_{n+2} = y_{n+1} + \frac{h f_{n+1}(y_{n+1} - y_n)}{2 (y_{n+1} - y_n) - h f_{n+1}}$$

We note that the rational block method is a two-step method.

4. Numerical results

In this section, we give some examples to assess the performance of the Runge-Kutta (Euler's and Heun's) and rational block methods. We want to see the maximum error of each method with the definition of the error is as follows

$$\operatorname{error} = \max_{0 \le n \le N} \{ |y_{\operatorname{exact}} - y_{\operatorname{numeric}}| \}$$

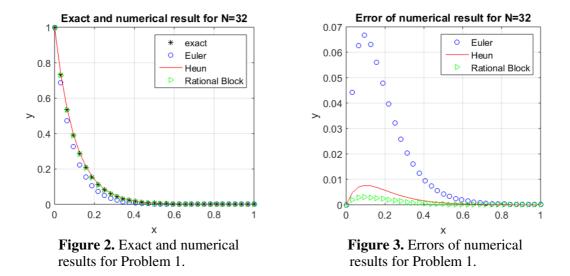
where N is the number of integration steps. For computation, we use the Matlab software for numerical programming and ploting the results. As follows, we have three problems considered by Ying *et al.* [7] to solve.

Problem 1

Consider the initial value problem

y'(x) = -10 y(x), y(0) = 1, $x \in [0,1].$ The exact solution is given by $y(x) = e^{-10x}$.

Table 1. Maximum errors for Problem 1.					
Ν	Euler	Heun	Rational block		
32	0.066654	0.007616	0.003021		
64	0.030792	0.001683	0.000749		
128	0.014851	0.000397	0.000187		
256	0.007304	0.000096	0.000047		



As given in Table 1 we obtain that the maximum error of the rational block method is smaller than the Euler and Heun methods. All three methods are convergent. That is, if the value of N is greater, the error of the numerical solution gets smaller. From Table 1, Figure 2, and Figure 3 we find that the numerical results are accurate, as numerical solutions are close to the exact solution. The error of each method is less than 0.07. We infer that all three numerical methods solve the problem quite well.

Problem 2 Consider the initial value problem as follows:

 $y''(x) + 101 y'(x) + 100 y(x) = 0, \quad y(0) = 1.01, \quad y'(0) = -2, \quad x \in [0,1].$

This problem can be rewritten as a system of first order ordinary differential equations:

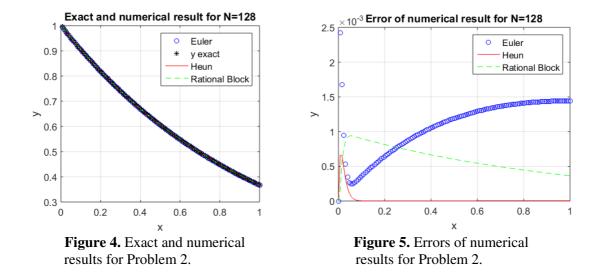
$$y'(x) = z(x),$$
 $y(0) = 1.01,$
 $z'(x) = -100 y(x) - 101 z(x),$ $z(0) = -2,$

where $x \in [0,1]$. The exact solutions to this system are given by:

$$y(x) = 0.01 e^{-100 x} + e^{-x},$$
$$z(x) = y' = -e^{-100x} - e^{-x}.$$

Ν	Euler	Heun	Rational block		
32	298872461.45	1.253348 x 10^12	0.017842		
64	0.007843	0.004487	0.003982		
128	0.002421	0.000661	0.000940		
256	0.000880	0.000126	0.000233		

Table 2. Maximum errors for Problem 2.



From Table 2, we observe that if the number of discrete points is too small, such as N = 32 (that is, the step size is too large) the Euler's method and Heun's method are not stable, so their numerical errors are very large. However, the Euler's error and Heun's error get smaller for larger number of discrete points. For this problem, the Heun's method performs best giving smallest error for large number of discrete points. All three methods are convergent. For this problem, illustration of exact and numerical results as well as their numerical errors are shown in Figure 4 and Figure 5, respectively.

Problem 3

Consider the following initial value problem:

$$y'(x) = 1 + y(x)^2$$
, $y(0) = 1$, $x \in [0,1]$.

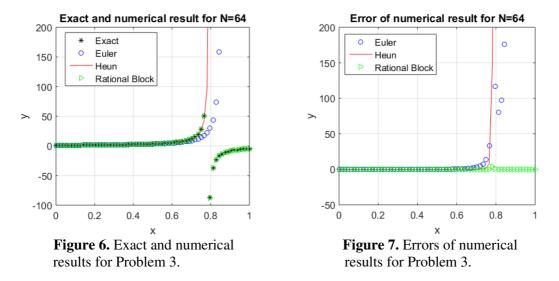
The exact solution to this problem is given by

$$y(x) = \tan\left(x + \frac{\pi}{4}\right).$$

This exact solution has a singularity point.

Table 3. Maximum errors for Problem 3. Here inf stands for infinity.				
N	Euler	Heun	Rational Block	
32	186471279.48	inf	13.92	
64	inf	inf	3.64	
128	inf	inf	1.20	
256	inf	inf	67.13	

 Table 3. Maximum errors for Problem 3. Here inf stands for infinity.



We have noticed that the solution has a singularity point at $x = \pi/4 \approx 0.7854$. Due to the singularity of the problem, Runge-Kutta methods are divergent, as indicated in Table 3. That is, the Euler's and Heun's methods are not able to solve this problem. In contrast, the rational block method is still able to solve this problem, even though its approximate value is very not accurate. For this problem, illustration of exact and numerical results as well as their numerical errors are shown in Figure 6 and Figure 7, respectively.

5. Conclusion

We have solved initial value problems using the first order Runge-Kutta, second order Runge-Kutta, and rational block methods. The rational block method is fast in computation, because this method can solve two points in one iteration. From numerical results, we find that rational block method is more robust than the other two methods. That is, the rational block method is able to solve a wider range of problems including those with singularity in their solutions.

Acknowledgment

This work was financially supported by Sanata Dharma University. The financial support is gratefully acknowledged by both authors.

References

- [1] Burden R L and Faires J D 1993 Numerical Analysis 5th Edition (Boston: PWS Publishing)
- [2] Nesticò A and Galante M 2015 An estimate model for the equalisation of real estate tax: a case study *International Journal of Business Intelligence and Data Mining* **10** 19
- [3] Jovanovič U, Štimec A, Vladušič D, Papa G and Šilc J 2015 Big-data analytics: a critical review and some future directions *International Journal of Business Intelligence and Data Mining* **10** 337
- [4] Ansari Z A and Syed A S 2016 Discovery of web usage patterns using fuzzy mountain clustering *International* Journal of Business Intelligence and Data Mining **11** 1
- [5] Lambert J D 1974 Two unconventional classes of methods for stiff systems Stiff Differential Equations edited by Willoughby R A (New York: Plenum Press) 171
- [6] Mungkasi S 2014 Metode rasional eksplisit untuk masalah nilai awal *Prosiding Seminar Nasional Sains dan Pendidikan Sains IX*, 21 Jun 2014, UKSW, Salatiga, Indonesia, 629
- [7] Ying T Y, Omar Z and Mansor K H 2014 An A-stable explicit rational block method for the numerical solution of initial value problem *Proceedings of the International Conference on Analysis and Mathematical Applications in Engineering and Science (AMAES)*, 19-22 Jan 2014, CSRI, Curtin University, Sarawak, Malaysia, 233
- [8] Ying T Y, Omar Z and Mansor K H 2016 Rational block method for the numerical solution of first order initial value problem I: Concepts and ideas *Global Journal of Pure and Applied Mathematics* **12** 3787
- [9] Ying T Y, Omar Z and Mansor K H 2016 Rational block method for the numerical solution of first order initial value problem II: A-stability *Global Journal of Pure and Applied Mathematics* **12** 3809
- [10] Mungkasi S 2016 Adaptive finite volume method for the shallow water equations on triangular grids Advances in

Mathematical Physics 2016 7528625

- [11] Supriyadi B and Mungkasi S 2016 Finite volume numerical solvers for non-linear elasticity in heterogeneous media International Journal for Multiscale Computational Engineering **14** 479
- [12] Mungkasi S, Sambada F A R and Puja I G K 2016 Detecting the smoothness of numerical solutions to the Euler equations of gas dynamics *ARPN Journal of Engineering and Applied Sciences* **11** 5860
- [13] Mungkasi S and Roberts S G 2016 A smoothness indicator for numerical solutions to the Ripa model Journal of Physics: Conference Series 693 012011
- [14] Budiasih L K, Wiryanto L H and Mungkasi S 2016 A modified Mohapatra-Chaudhry two-four finite difference scheme for the shallow water equations *Journal of Physics: Conference Series* 693 012012