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Abstract. In this paper, we investigate the performance of parallel computation in solving the 

one-dimensional elasticity equations. Elasticity equations are usually implemented in 

engineering science. Solving these equations fast and efficiently is desired. Therefore, we 

propose the use of parallel computation. Our parallel computation uses CUDA of the NVIDIA. 

Our research results show that parallel computation using CUDA has a great advantage and is 

powerful when the computation is of large scale. 

1. Introduction 

A large number of real world problems can be modelled mathematically. Solutions to mathematical 

models are representatives of the solutions to the real problems. Some mathematical models are in the 

form of differential equations. 

In this paper, we solve a system of partial differential equations. In particular, we consider the 

nonlinear elasticity equations. These equations were derived from engineering problems relating to 

elastic wave propagation through heterogeneous media [1]. 

Some work has been done previously regarding the nonlinear elasticity equations. Supriyadi and 

Mungkasi [2] solved the nonlinear elasticity equations in a sequential computation. Solving the 

problem in sequential is not appropriate for a large-scale problem, as the computation is tedious for the 

large-scale problem. Darmawan and Mungkasi [3] solved the nonlinear elasticity equations in a 

parallel computation using the MPI with a cluster of workstations applying MPI_Send and MPI_Recv 

techniques. However, parallel programming with MPI_Send and MPI_Recv techniques in the MPI 

standard is not appropriate to be used in the one-dimensional elasticity equations. This is because the 

total time needed in the data exchange is considered more dominant compared with the total amount of 

time to conduct the basic elasticity computation using the finite volume method [4].  

Nowadays, Graphic Processing Units (GPUs) have better performance than CPUs in both floating 

point operation and memory bandwidth. One of computing platforms and programming models in 

GPUs is Compute Unified Device Architecture (CUDA) [5]. GPUs with CUDA offer high 

performance at a very low cost, and they can also be integrated into high performance computer 

systems [6-7]. This paper investigates if we obtain high speed in parallel computations using CUDA to 

solve elasticity problems. 

This paper is organized as follows. We recall the mathematical model concerning elasticity 

problems and present the numerical scheme to solve the model in Section 2. We describe the 
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numerical method in parallel to solve elasticity problems in Section 3. Computational results and 

discussion are provided in Section 4. Finally, we draw some concluding remarks in Section 5. 

2. Mathematical model and numerical scheme 
In this section, we present the mathematical model to be solved and the numerical scheme used to 

solve the model. 

The nonlinear elasticity equations are given by 

,0=− xt uε  (1) 

  

.0)( =− xtu εσ  (2) 

In this model, the free variables are time t  and the space x . In addition, the notation ),( txεε =  is the 

strain, ),( txuu =  represents the velocity, and )(εσ  denotes the stress. The space domain that we 

consider in this paper is .1000 ≤≤ x  The initial condition for our test problem is 

,0)0,( =xε  (3) 

  

,0)0,( =xu  (4) 

for all .x  The boundary condition at 0=x  and 100=x  is 

,0),0( =tε  (5) 
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The system of equations (1)-(2) have the form of a conservation law  

,0)( =+ xt qfq  (9) 

where ),( txqq =  is the conserved quantity and )(qf  is the flux function. One of numerical methods 

that can be used to solve conservation laws is the finite volume method. The finite volume method 

itself is conservative, as the numerical quantity is conserved at any time. 

The finite volume scheme for equation (9) in the fully discrete version is 
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where n
iQ  is the approximate quantity computed in the finite volume frame work at the i -th cell at the 

n-th time step. In addition, the variable n
iF 2/1+

 denotes the approximate flux at the )2/1( +i  interface 

from the n-th time step to the  )1( +n -th time step. The notations t∆  and x∆  are the time step and the 
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spatial cell width respectively. We use a uniform time step as well as a uniform spatial cell width. All 

fluxes are computed using the Lax-Friedrichs formulation. Lax-Friedrichs fluxes for equation (9) 

relating the finite volume scheme (10) are given by 
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3. Method for parallel computations 
The method for our parallel computations is described as follows. 

NVIDIA developed the CUDA programming model and computing platform to let programmers 

write scalable parallel codes [5]. CUDA is an extension of the C and C++  programming languages. 

The programmer writes a serial program that calls parallel kernels, which may be functions or 

programs. A kernel executes a set of parallel threads. The threads must be organized into hierarchy of 

grids of thread blocks. A thread block is a set of concurrent threads that share access to a memory 

space privately to the block and cooperate among themselves through barrier synchronization. A grid 

is a set of thread blocks that each of them may be executed independently in parallel [8]. In this work, 

we use CUDA on a Personal Computer and a GPU for parallel programming with the C programming 

language. 

Foster [9] mentioned that the execution time (which is varied with problem size) as well as the 

efficiency (which is independent of problem size) can be the metrics to evaluate parallel algorithm 

performance. The relative speed up Srelative is calculated as 

pT

T
S 1

relative = , (13) 

where the execution time T1 is used on one processor and the time pT  is used on p processors. The 

factor by which execution time is reduced on p processors is actually the relative speedup. Relative 

efficiency relativeE is calculated as  

pTp

T
E 1

relative = . (14) 

Notice that from equations (13)-(14), the relative speedup is in relation with the relative efficiency. 

However, according to Tan [6] in GPU parallel computing the execution times are tested on 

hardware platforms with totally different architectures, namely, the CPU and the GPU. The efficiency 

is not as a useful metric as in CPU parallel analysis. Therefore, in this paper we evaluate 

computational results using the execution time and the speedup defined by equation (13) with a fixed p 

processor equal to the number of GPU cores plus the number of CPU cores. 

4. Computational results 
In this section we present main results of our research.  

Computations are conducted in a Personal Computer with one Core 2 Quad processor with RAM 8 

GB and a GPU using GT 730 from NVIDIA with 96 cores, memory 2 GB and maximum of 1024 

threads per block. We use the global memory in the GPU to share data between threads. The operating 

system that we use is Windows 7 on 64 bit. The parallel computing environment is CUDA Toolkit 7.5. 
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Table 1. Total time  (in seconds) and speedup for elasticity simulation scenarios with 1001 threads per 

block conducted in parallel. 

Size of arrays 

(N) 

Sequential execution time 

(T1) 

Parallel execution time 

(Tp=96 GPU + 1 CPU) 

Speedup 

(Srelative) 

10001 1.36267 0.76433 0.56091 

20001 2.00200 1.52400 0.76124 

30001 2.33433 2.28767 0.98001 

40001 2.86500 3.08367 1.07632 

50001 3.42167 3.81200 1.11408 

60001 3.92067 4.60200 1.17378 

70001 4.46700 5.39700 1.20819 

80001 5.01800 6.16633 1.22884 

90001 5.54867 6.94733 1.25207 

100001 6.13567 7.73200 1.26017 

110001 6.33533 8.51267 1.34368 

120001 6.88533 9.29733 1.35031 

130001 7.43600 10.11400 1.36014 

140001 7.97700 10.87833 1.36371 

150001 8.38233 11.66367 1.39146 

160001 8.82933 12.46967 1.41230 

 

 

We have conducted 16 simulations of parallel computations and 16 simulations of sequential 

computations for running the program in order to solve the elasticity problem mentioned in Section 2. 

The elasticity problem is based on one-dimensional elasticity equations implemented in one-

dimensional array. We use scenarios with increasing size of the arrays from 10001 to 160001 with the 

step is 10000. We choose 1001 threads per block and calculate the number of blocks to obtain the 

number of threads at least equal to the dimension of the arrays. 

For a basic elasticity problem we record the total time for each simulation in Table 1. As shown in 

Figure 1 for the total time of both sequential and parallel executions, we observe that more number of 

size arrays leads to slower computation. For the size of arrays between 10001 and 20001, sequential 

execution is faster than parallel execution. Surprisingly for the size of arrays between 30001 and 

40001 we observe that parallel execution exceeds sequential execution, and parallel execution time 

continue to increase linearly exceeding the sequential execution time. As shown in Figure 2, for the 

speedup less than 1, the speedup increases linearly and sharply. However, for the speedup more than 1, 

the speedup increases linearly and gradually. This indicates that more size of arrays will gain better 

speedup. The limitation is the number of memory available. It means that for one-dimensional 

elasticity computations, more size of arrays in the CUDA parallel programming will gain more 

speedup. 
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Figure 1. Total time elapsed in a elasticity simulation scenario for several computational 

settings. The horizontal axis is the size of arrays. The vertical axis is the total time used for 

computations. 

 

 

 

 
 

Figure 2. Speedup in an elasticity simulation scenario for several computational settings. The 

horizontal axis is the sizes of arrays. The vertical axis is the speedup. 
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5. Conclusion 
We have simulated several scenarios of parallel computations for elasticity problems. We obtain that 

parallel programming with CUDA can be used to improve execution time of computation to solve the 

one-dimensional elasticity equations within an appropriate array dimension. The improvement of 

speedup can be obtained when the size of arrays are more than  40001 and it will continue to increase 

linearly until 160001. Without loss of generality, we recommend that the sizes of arrays in the one-

dimensional elasticity computation must be appropriate to obtain improvement of speedup in parallel 

computations using CUDA. 
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