

This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 202.94.83.84

This content was downloaded on 26/03/2017 at 10:37

Please note that terms and conditions apply.

Performance of parallel computation using CUDA for solving the one-dimensional elasticity

equations

View the table of contents for this issue, or go to the journal homepage for more

2017 J. Phys.: Conf. Ser. 801 012080

(http://iopscience.iop.org/1742-6596/801/1/012080)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Composite Materials: Elasticity

Y Grabovsky

Very Fast Integrated Optoelectronic Logic for Parallel Computation Using Photodiode Gates

Hiroyuki Kamiyama, Atsuo Shouno, Yasunari Umemoto et al.

Very Fast Integrated Optoelectronic Logic for Parallel Computation Using Photodiode Gates

Hiroyuki Kamiyama, Atsuo Shouno, Yasunari Umemoto et al.

Spectral Description of a Class of Infinite-Dimensional Hamiltonian Operators and Its Application

to Plane Elasticity Equations Without Body Force

Fan Xiao-Ying and Alatancang

Homogenization of elasticity equations with contrasting coefficients

G V Sandrakov

A hybrid one-step inversion method for shear modulus imaging using time-harmonic vibrations

Tae Hwi Lee, Chi Young Ahn, Oh In Kwon et al.

Some exact solutions for inverse elasticity

Paul E Barbone and Assad A Oberai

Applications of meshless methods for damage computations with finite strains

Xiaofei Pan and Huang Yuan

Exact determination of the volume of an inclusion in a body having constant shear modulus

Andrew E Thaler and Graeme W Milton

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/801/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/book/978-0-7503-1048-2/chapter/bk978-0-7503-1048-2ch9
http://iopscience.iop.org/article/10.1143/JJAP.29.L2141
http://iopscience.iop.org/article/10.1143/JJAP.29.L1248
http://iopscience.iop.org/article/10.1088/0253-6102/50/4/39
http://iopscience.iop.org/article/10.1088/0253-6102/50/4/39
http://iopscience.iop.org/article/10.1070/SM1999v190n12ABEH000443
http://iopscience.iop.org/article/10.1088/0266-5611/26/8/085014
http://iopscience.iop.org/article/10.1088/0031-9155/52/6/003
http://iopscience.iop.org/article/10.1088/0965-0393/17/4/045005
http://iopscience.iop.org/article/10.1088/0266-5611/30/12/125008

Performance of parallel computation using CUDA for solving

the one-dimensional elasticity equations

J B B Darmawan1 and S Mungkasi2

1Department of Informatics, Faculty of Science and Technology,

Sanata Dharma University, Yogyakarta, Indonesia
2Department of Mathematics, Faculty of Science and Technology,

Sanata Dharma University, Yogyakarta, Indonesia

E-mail: b.darmawan@usd.ac.id, sudi@usd.ac.id

Abstract. In this paper, we investigate the performance of parallel computation in solving the

one-dimensional elasticity equations. Elasticity equations are usually implemented in

engineering science. Solving these equations fast and efficiently is desired. Therefore, we

propose the use of parallel computation. Our parallel computation uses CUDA of the NVIDIA.

Our research results show that parallel computation using CUDA has a great advantage and is

powerful when the computation is of large scale.

1. Introduction

A large number of real world problems can be modelled mathematically. Solutions to mathematical

models are representatives of the solutions to the real problems. Some mathematical models are in the

form of differential equations.

In this paper, we solve a system of partial differential equations. In particular, we consider the

nonlinear elasticity equations. These equations were derived from engineering problems relating to

elastic wave propagation through heterogeneous media [1].

Some work has been done previously regarding the nonlinear elasticity equations. Supriyadi and

Mungkasi [2] solved the nonlinear elasticity equations in a sequential computation. Solving the

problem in sequential is not appropriate for a large-scale problem, as the computation is tedious for the

large-scale problem. Darmawan and Mungkasi [3] solved the nonlinear elasticity equations in a

parallel computation using the MPI with a cluster of workstations applying MPI_Send and MPI_Recv

techniques. However, parallel programming with MPI_Send and MPI_Recv techniques in the MPI

standard is not appropriate to be used in the one-dimensional elasticity equations. This is because the

total time needed in the data exchange is considered more dominant compared with the total amount of

time to conduct the basic elasticity computation using the finite volume method [4].

Nowadays, Graphic Processing Units (GPUs) have better performance than CPUs in both floating

point operation and memory bandwidth. One of computing platforms and programming models in

GPUs is Compute Unified Device Architecture (CUDA) [5]. GPUs with CUDA offer high

performance at a very low cost, and they can also be integrated into high performance computer

systems [6-7]. This paper investigates if we obtain high speed in parallel computations using CUDA to

solve elasticity problems.

This paper is organized as follows. We recall the mathematical model concerning elasticity

problems and present the numerical scheme to solve the model in Section 2. We describe the

1

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012080 doi:10.1088/1742-6596/801/1/012080

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0

numerical method in parallel to solve elasticity problems in Section 3. Computational results and

discussion are provided in Section 4. Finally, we draw some concluding remarks in Section 5.

2. Mathematical model and numerical scheme
In this section, we present the mathematical model to be solved and the numerical scheme used to

solve the model.

The nonlinear elasticity equations are given by

,0=− xt uε (1)

.0)(=− xtu εσ (2)

In this model, the free variables are time t and the space x . In addition, the notation),(txεε = is the

strain,),(txuu = represents the velocity, and)(εσ denotes the stress. The space domain that we

consider in this paper is .1000 ≤≤ x The initial condition for our test problem is

,0)0,(=xε (3)

,0)0,(=xu (4)

for all .x The boundary condition at 0=x and 100=x is

,0),0(=tε (5)













>

≤














 −
+−

=

,60if0

,60if
30

)30(
cos14.0

),0(

t

t
t

tu

π

 (6)

,0),100(=tε (7)

.0),100(=tu (8)

The system of equations (1)-(2) have the form of a conservation law

,0)(=+ xt qfq (9)

where),(txqq = is the conserved quantity and)(qf is the flux function. One of numerical methods

that can be used to solve conservation laws is the finite volume method. The finite volume method

itself is conservative, as the numerical quantity is conserved at any time.

The finite volume scheme for equation (9) in the fully discrete version is

,)(2/12/1
1 n

i
n

i
n
i

n
i FF

x

t
QQ

−+

+
−

∆

∆
−= (10)

where n
iQ is the approximate quantity computed in the finite volume frame work at the i -th cell at the

n-th time step. In addition, the variable n
iF 2/1+

 denotes the approximate flux at the)2/1(+i interface

from the n-th time step to the)1(+n -th time step. The notations t∆ and x∆ are the time step and the

2

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012080 doi:10.1088/1742-6596/801/1/012080

spatial cell width respectively. We use a uniform time step as well as a uniform spatial cell width. All

fluxes are computed using the Lax-Friedrichs formulation. Lax-Friedrichs fluxes for equation (9)

relating the finite volume scheme (10) are given by

),(
2

)]()([
2

1
11

2
1

n
i

n
i

n
i

n
i

n

i
qq

t

x
qfqfF −

∆

∆
−+=

+++
 (11)

and

).(
2

)]()([
2

1
11

2
1

n
i

n
i

n
i

n
i

n

i
qq

t

x
qfqfF

−−−
−

∆

∆
−+= (12)

3. Method for parallel computations
The method for our parallel computations is described as follows.

NVIDIA developed the CUDA programming model and computing platform to let programmers

write scalable parallel codes [5]. CUDA is an extension of the C and C++ programming languages.

The programmer writes a serial program that calls parallel kernels, which may be functions or

programs. A kernel executes a set of parallel threads. The threads must be organized into hierarchy of

grids of thread blocks. A thread block is a set of concurrent threads that share access to a memory

space privately to the block and cooperate among themselves through barrier synchronization. A grid

is a set of thread blocks that each of them may be executed independently in parallel [8]. In this work,

we use CUDA on a Personal Computer and a GPU for parallel programming with the C programming

language.

Foster [9] mentioned that the execution time (which is varied with problem size) as well as the

efficiency (which is independent of problem size) can be the metrics to evaluate parallel algorithm

performance. The relative speed up Srelative is calculated as

pT

T
S 1

relative = , (13)

where the execution time T1 is used on one processor and the time pT is used on p processors. The

factor by which execution time is reduced on p processors is actually the relative speedup. Relative

efficiency relativeE is calculated as

pTp

T
E 1

relative = . (14)

Notice that from equations (13)-(14), the relative speedup is in relation with the relative efficiency.

However, according to Tan [6] in GPU parallel computing the execution times are tested on

hardware platforms with totally different architectures, namely, the CPU and the GPU. The efficiency

is not as a useful metric as in CPU parallel analysis. Therefore, in this paper we evaluate

computational results using the execution time and the speedup defined by equation (13) with a fixed p

processor equal to the number of GPU cores plus the number of CPU cores.

4. Computational results
In this section we present main results of our research.

Computations are conducted in a Personal Computer with one Core 2 Quad processor with RAM 8

GB and a GPU using GT 730 from NVIDIA with 96 cores, memory 2 GB and maximum of 1024

threads per block. We use the global memory in the GPU to share data between threads. The operating

system that we use is Windows 7 on 64 bit. The parallel computing environment is CUDA Toolkit 7.5.

3

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012080 doi:10.1088/1742-6596/801/1/012080

Table 1. Total time (in seconds) and speedup for elasticity simulation scenarios with 1001 threads per

block conducted in parallel.

Size of arrays

(N)

Sequential execution time

(T1)

Parallel execution time

(Tp=96 GPU + 1 CPU)

Speedup

(Srelative)

10001 1.36267 0.76433 0.56091

20001 2.00200 1.52400 0.76124

30001 2.33433 2.28767 0.98001

40001 2.86500 3.08367 1.07632

50001 3.42167 3.81200 1.11408

60001 3.92067 4.60200 1.17378

70001 4.46700 5.39700 1.20819

80001 5.01800 6.16633 1.22884

90001 5.54867 6.94733 1.25207

100001 6.13567 7.73200 1.26017

110001 6.33533 8.51267 1.34368

120001 6.88533 9.29733 1.35031

130001 7.43600 10.11400 1.36014

140001 7.97700 10.87833 1.36371

150001 8.38233 11.66367 1.39146

160001 8.82933 12.46967 1.41230

We have conducted 16 simulations of parallel computations and 16 simulations of sequential

computations for running the program in order to solve the elasticity problem mentioned in Section 2.

The elasticity problem is based on one-dimensional elasticity equations implemented in one-

dimensional array. We use scenarios with increasing size of the arrays from 10001 to 160001 with the

step is 10000. We choose 1001 threads per block and calculate the number of blocks to obtain the

number of threads at least equal to the dimension of the arrays.

For a basic elasticity problem we record the total time for each simulation in Table 1. As shown in

Figure 1 for the total time of both sequential and parallel executions, we observe that more number of

size arrays leads to slower computation. For the size of arrays between 10001 and 20001, sequential

execution is faster than parallel execution. Surprisingly for the size of arrays between 30001 and

40001 we observe that parallel execution exceeds sequential execution, and parallel execution time

continue to increase linearly exceeding the sequential execution time. As shown in Figure 2, for the

speedup less than 1, the speedup increases linearly and sharply. However, for the speedup more than 1,

the speedup increases linearly and gradually. This indicates that more size of arrays will gain better

speedup. The limitation is the number of memory available. It means that for one-dimensional

elasticity computations, more size of arrays in the CUDA parallel programming will gain more

speedup.

4

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012080 doi:10.1088/1742-6596/801/1/012080

Figure 1. Total time elapsed in a elasticity simulation scenario for several computational

settings. The horizontal axis is the size of arrays. The vertical axis is the total time used for

computations.

Figure 2. Speedup in an elasticity simulation scenario for several computational settings. The

horizontal axis is the sizes of arrays. The vertical axis is the speedup.

5

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012080 doi:10.1088/1742-6596/801/1/012080

5. Conclusion
We have simulated several scenarios of parallel computations for elasticity problems. We obtain that

parallel programming with CUDA can be used to improve execution time of computation to solve the

one-dimensional elasticity equations within an appropriate array dimension. The improvement of

speedup can be obtained when the size of arrays are more than 40001 and it will continue to increase

linearly until 160001. Without loss of generality, we recommend that the sizes of arrays in the one-

dimensional elasticity computation must be appropriate to obtain improvement of speedup in parallel

computations using CUDA.

Acknowledgments
This work was financially supported by the Institute for Research and Community Services of Sanata

Dharma University (LPPM USD). The LPPM USD internal research grant year 2016 is gratefully

acknowledged by both authors.

References
[1] LeVeque R J 2002 Finite-volume methods for non-linear elasticity in heterogeneous media

International Journal for Numerical Methods in Fluids 40 93

[2] Supriyadi B and Mungkasi S 2016 Finite volume numerical solvers for non-linear elasticity in

heterogeneous media International Journal for Multiscale Computational Engineering 14

479

[3] Darmawan J B B and Mungkasi S 2016 Parallel computations using a cluster of workstations to

simulate elasticity problems Journal of Physics: Conference Series accepted

[4] Mungkasi S and Darmawan J B B 2015 Fast and efficient parallel computations using a cluster

of workstations to simulate flood flows Communications in Computer and Information

Science 516 469

[5] NVIDIA Corp 2016 CUDA C Programming Guide. Available online (accessed on

21 November 2016) https:docs.nvidia.com/cuda/cuda-c-programming-guide

[6] Tan Y and Ding K 2016 A survey on GPU-based implementation of swarm intelligence

algorithms IEEE Transactions on Cybernetics 46 2028

[7] Coates A, Huval B, Wang T, Wu D J and Ng A Y 2013 Deep learning with COTS HPC systems

Proceedings of the International Conference on Machine Learning (ICML) (Atlanta, GA,

USA) 1337

[8] Nickolls J, Buck I, Garland M and Skadron K 2008 Scalable parallel programming with CUDA

ACM Queue 6 40

[9] Foster I 1995 Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering (Boston: Addison-Wesley)

6

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012080 doi:10.1088/1742-6596/801/1/012080

