EFEK HEPATOPROTEKTIF JUS BUAH APEL HIJAU
(Pyrus malus L.) PADA MENCIT JANTAN TERINDUKSI PARASETAMOL

Skripsi
Diajukan untuk Memenuhi Salah Satu Syarat
Memperoleh Gelar Sarjana Farmasi (S.Farm.)
Program Studi Ilmu Farmasi

Oleh:
Antonius A. Ladoangin
NIM : 008114063

FAKULTAS FARMASI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2004
Penelitian untuk Skripsi

EFEK HEPATOPROTEKTIF JUS BUAH APEL HIJAU
(Pyrus malus L.) PADA MENCIT JANTAN TERINDUKSI PARASETAMOL

Yang diajukan oleh:
Antonius A. Ladoangin
NIM : 008114063

telah disetujui oleh:

Pembimbing Utama:

(Yosief Wijoyo, M. Si., Apt.)
tanggal Juli 2004
Pengesahan Skripsi
Berjudul

EFEK HEPATOPROTEKTIF JUS BUAH APEL HIJAU
(Pyrus malus L.) **PADA MENCIT JANTAN TERINDUKSI PARASETAMOL**

Oleh :
Antonius A. Ladoangin
NIM : 008114063

Dipertahankan di hadapan Panitia Penguji Skripsi
Fakultas Farmasi
Universitas Sanata Dharma
Pada tanggal :
04 Agustus 2004

Mengelakui
Fakultas Farmasi
Universitas Sanata Dharma
Dokan
(Drs. Ag. Yuswanto, S.U.,Ph D., Apt)

Pembimbing Utama :
(Yosef Wijoyo, M.Si., Apt)

Panitia Penguji :
1. Yosef Wijoyo, M.Si., Apt
2. Phebe Hendra, M.Si., Apt
3. dr. Luciana Kuswibawati, M.Kes
Jika suatu pekerjaan layak dikerjakan
maka dia wajib dikerjakan
sebaik-baiknya..........
PRAKATA

Puji syukur kepada Tahan Yang Maha Esa atas segala berral dan anugerah-Nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul: "EFEK HEPATOPROTEKTIF JUS BUAH APEL HIJAU (Pyrus matus L.) PADA MENCIT JANTAN TERINDUKSI PARASETAMOL" dengan baik.

Skripsi ini dibuat untuk memenuhi salah satu syarat memperoleh gelar Sarjana Farmasi (S.Farm) Program Studi Farmasi, Universitas Sanata Dharma.

Dalam penelitian ini penulis telah banyak dibantu oleh:

8. Mas Parjiman, mas Kayat, mas Heru, mas Wagiran, mas Andre, dan laboran lainnya yang telah membantu kelancaran kegiatan di laboratorium.

12. Semua pihak yang tidak dapat disebutkan satu persatu, yang telah banyak membantu dalam penyusunan skripsi ini.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan, karena itu penulis menerima kritik dan saran yang membangun dan bermanfaat bagi pengembangan ilmu pengetahuan, serta dapat menjadi acuan bagi penelitian-penelitian selanjutnya.

Yogyakarta, Juli 2004

[Signature]

Penulis
PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa skripsi yang saya tulis ini tidak memuat karya atau bagian orang lain, kecuali yang telah disebutkan dalam kutipan dan daftar pustaka, sebagaimana layaknya karya ilmiah.

Yogyakarta, Juli 2004

Penulis

(Antonius A. Ladoangin)
DAFTAR ISI

HALAMAN JUDUL .. i
HALAMAN PERSETUJUAN PEMBIMBING ... ii
HALAMAN PENGESAHAN .. iii
HALAMAN PERSEMBAHAN ... iv
PRAKATA .. v
PERNYATAAN KEASLIAN KARYA ... vii
DAFTAR ISI ... viii
DAFTAR TABEL .. xiii
DAFTAR GAMBAR ... xv
DAFTAR LAMPIRAN .. xvi
INTISARI .. xviii
ABSTRACT ... xix
BAB I. PENGANTAR ... 1
 A. Latar Belakang .. 1
 1. Permasalahan ... 3
 2. Keaslian penelitian .. 3
 3. Manfaat penelitian .. 3
 a. Manfaat teoritis .. 3
 b. Manfaat praktis ... 4
 B. Tujuan Penelitian ... 4
 1. Tujuan umum .. 4
 2. Tujuan khusus .. 4
BAB II. PENELAAHAN PUSTAKA ... 5
A. Anatomi dan Fisioili Hati ... 5
B. Patofisiologi Hepatitis Akut dan Sasaran Terapi 8
C. Kriteria Obat Ideal Hepatitis .. 14
D. Hepatotoksin .. 15
E. Parasetamol .. 16
F. Metode Uji Hepatotoksisitas .. 23
G. Buah Apel Hijau (Pyurs malus L.) .. 25
 1. Sistematika ... 25
 2. Morfologi ... 26
 3. Ekologi dan penyebaran ... 27
 4. Kandungan kimia .. 27
 5. Khasiat dan kegunaan ... 27
H. Flavonoid ... 28
 1. Pendahuluan ... 28
 2. Aktivitas antioksidan ... 29
 3. Pengaruh flavonoid terhadap spesies oksigen reaktif yang muncul
 akibat pengaktifan sel fagosit ... 31
 4. Efek flavonoid pada peroksidasi lipid .. 31
J. Landasan Teori .. 33
J. Hipotesis .. 35
BAB III. METODOLOGI PENELITIAN ... 36
A. Jenis dan Rancangan Penelitian ... 36
B. Variabel Penelitian dan Definisi Operasional ... 36
 1. Variabel utama ... 36
 2. Variabel pengacau terkendali ... 36
 3. Variabel pengacau tak terkendali ... 37
C. Subyek dan Bahan Penelitian ... 37
 1. Subyek penelitian .. 37
 2. Bahan penelitian .. 37
D. Alat Penelitian .. 38
E. Tata Cara Penelitian .. 38
 1. Determinasi tanaman apel hijau .. 38
 2. Penetapan konsentrasi jus buah apel hijau dan dosis maksimalnya 39
 3. Pembuatan jus buah apel hijau ... 39
 4. Pembuatan suspending agent CMC 1% ... 39
 5. Pembuatan suspensi parasetamol ... 40
 6. Uji pendahuluan ... 40
 a. Penetapan dosis hepatotoksik parasetamol 40
 b. Penetapan waktu kehepatotoksikan parasetamol
 mencapai maksimal .. 41
 c. Penetapan lama praperlakuan jus buah apel hijau 41
 d. Penetapan dosis jus buah apel hijau .. 42
 7. Pengelompokan dan perlakuan hewan uji ... 43
8. Pembuatan serum ... 44
9. Penetapan aktivitas GPT-serum ... 44
10. Pembuatan preparat histologi sel hati 45
11. Pemeriksaan histologi sel hati .. 45

F. Analisis Hasil ... 46

BAB IV. HASIL DAN PEMBAHASAN 47

A. Determinasi Tanaman Apel Hijau (Pyrus malus L.) 47
B. Uji Pendahuluan ... 48
 1. Penetapan dosis hepatotoksik parasetamol 48
 2. Penetapan waktu ke hepatotoksikan parasetamol mencapai maksimal .. 49
 3. Penetapan lama praperlakuan jus buah apel hijau 51
 4. Penetapan dosis jus buah apel hijau 52

C. Aktivitas GPT-serum dan Gambaran Histopatologi Sel Hati Mencit .. 54
 1. Kontrol negatif CMC 1% 0,33 g/kgBB 56
 2. Kontrol jus buah apel hijau 25,0 g/kgBB 57
 3. Kontrol positif parasetamol 0,250 g/kgBB 59
 4. Efek hepatoprotektif jus buah apel hijau dosis 0,39; 1,56; 6,25; dan 25,0 g/kgBB pada mencit jantan terinduksi parasetamol 60

D. Dosis Efektif Tengah (ED50) .. 72

E. Rangkuman Pembahasan ... 73
BAB V. KESIMPULAN DAN SARAN ... 74
A. Kesimpulan ... 74
B. Saran .. 74
DAFTAR PUSTAKA .. 75
LAMPIRAN ... 79
BIOGRAFI PENULIS .. 139
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel I</td>
<td>Prosedur penetapan aktivitas GPT-serum</td>
<td>44</td>
</tr>
<tr>
<td>Tabel II</td>
<td>Aktivitas GPT-serum dan derajat kerusakan sel hati mencit pada selang waktu 24 jam setelah pemberian parasetamol dosis 0,225 g/kgBB; 0,250 g/kgBB; 0,275 g/kgBB; dan 0,300 g/kgBB</td>
<td>48</td>
</tr>
<tr>
<td>Tabel III</td>
<td>Aktivitas GPT-serum dan derajat kerusakan sel hati mencit setelah pemberian parasetamol 0,250 g/kgBB pada selang waktu 24, 48, 72, dan 96 jam</td>
<td>50</td>
</tr>
<tr>
<td>Tabel IV</td>
<td>Aktivitas GPT-serum dan derajat kerusakan sel hati mencit setelah praperlakukan jus buah apel hijau pada selang waktu 2, 4, 6, 8, dan 10 hari terinduksi parasetamol 0,250 g/kgBB</td>
<td>51</td>
</tr>
<tr>
<td>Tabel V</td>
<td>Aktivitas GPT-serum mencit setelah praperlakan jus buah apel hijau dosis 25,0 g/kgBB 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB</td>
<td>53</td>
</tr>
<tr>
<td>Tabel VI</td>
<td>Purata ± SE aktivitas GPT-serum mencit jantan setelah praperlakan jus buah apel hijau 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB</td>
<td>55</td>
</tr>
<tr>
<td>Tabel VII</td>
<td>Pengaruh praperlakan jus buah apel hijau 1x sehari selama 6 hari berturut-turut terhadap histopatologi sel hati mencit terinduksi parasetamol 0,250 g/kgBB</td>
<td>56</td>
</tr>
<tr>
<td>Tabel VIII</td>
<td>Persen efek hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol dan nilai ED$_{50}$</td>
<td>72</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Tabel IX</td>
<td>Aktivitas GPT-serum mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol 0,250 g/kgBB</td>
<td>83</td>
</tr>
<tr>
<td>Tabel X</td>
<td>Rangkuman hasil analisis aktivitas GPT-serum mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol dengan uji Mann-Whitney</td>
<td>118</td>
</tr>
<tr>
<td>Tabel XI</td>
<td>Data skoring gambaran histopatologi sel hati menurut derajat kerusakannya pada mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol 0,250 g/kgBB</td>
<td>119</td>
</tr>
<tr>
<td>Tabel XII</td>
<td>Hasil pengamatan mikroskopsis sel hati mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol 0,250 g/kgBB</td>
<td>134</td>
</tr>
<tr>
<td>Tabel XIII</td>
<td>Gambaran makroskopsis organ hati mencit sesaat setelah dibedah akibat praperlakuan jus buah apel hijau 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB</td>
<td>135</td>
</tr>
<tr>
<td>Tabel XIV</td>
<td>Rangkuman hasil analisis data skoring dengan uji Mann-Whitney</td>
<td>136</td>
</tr>
<tr>
<td>Tabel XV</td>
<td>Dosis, log dosis, % efek hepatoprotektif, dan nilai probit pada masing-masing kelompok perlakuan</td>
<td>138</td>
</tr>
<tr>
<td>Gambar</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Gambar 1</td>
<td>Struktur dasar hati</td>
<td>7</td>
</tr>
<tr>
<td>Gambar 2</td>
<td>Jenis nekrosis sel hati</td>
<td>12</td>
</tr>
<tr>
<td>Gambar 3</td>
<td>Struktur parasetamol</td>
<td>17</td>
</tr>
<tr>
<td>Gambar 4</td>
<td>Rangkuman sistem peniraktifan dan pengaktifan hayati parasetamol dan aneka kemungkinan mekanisme kehepatotoksikan</td>
<td>22</td>
</tr>
<tr>
<td>Gambar 5</td>
<td>Kerangka flavonoid dan sistem penomoran turunan flavonoid</td>
<td>28</td>
</tr>
<tr>
<td>Gambar 6</td>
<td>Fotomikroskopi sel hati mencit jantan (HE, 40x10)</td>
<td>61</td>
</tr>
<tr>
<td>Gambar 7</td>
<td>Fotomikroskopi sel hati mencit jantan (HE, 40x10)</td>
<td>68</td>
</tr>
<tr>
<td>Gambar 8</td>
<td>Kemungkinan mekanisme reaksi penangkapan radikal bebas oleh flavonoid</td>
<td>71</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

Lampiran 1 Foto tanaman apel hijau ... 79
Lampiran 2 Foto buah apel hijau .. 80
Lampiran 3 Surat pengesahan determinasi tanaman apel 81
Lampiran 4 Foto jus buah apel hijau ... 82
Lampiran 5 Tabel X. Aktivitas GPT-serum mencit jantan setelah
praperlakuan jus buah apel hijau terinduksi
parasetamol 0,250 g/kgBB ... 83
Lampiran 6 Hasil analisis statistik penetapan dosis hepatotoksik
parasetamol .. 84
Lampiran 7 Hasil analisis statistik penetapan waktu kehepatotoksikan
parasetamol mencapai maksimai ... 88
Lampiran 8 Hasil analisis statistik penetapan lama praperlakuan
jus buah apel hijau ... 92
Lampiran 9 Hasil analisis statistik praperlakuan jus apel hijau pada
mencit jantan terinduksi parasetamol .. 105
Lampiran 10 Tabel XI. Rangkuman hasil analisis aktivitas GPT-serum
mencit jantan setelah praperlakuan jus buah apel hijau
terinduksi parasetamol dengan uji Mann-Whitney 118
Lampiran 11 Tabel XII. Data skoring gambaran histopatologi sel
hati menurut derajat kerusakannya pada mencit jantan
setelah praperlakuan jus buah apel hijau terinduksi
parasetamol 0,250 g/kgBB .. 119
Lampiran 12 Hasil analisis statistik data skoring histopatologi sel hati mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol ... 120

Lampiran 13 Tabel XIII. Hasil pengamatan mikroskopis sel hati mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol ... 134

Lampiran 14 Tabel XIII. Gambaran makroskopis organ hati mencit sesaat setelah dibedah akibat praperlakuan jus buah apel hijau 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB ... 135

Lampiran 15 Tabel XIV. Rangkuman hasil analisis data skoring dengan uji Mann-Whitney ... 136

Lampiran 16 Perhitungan % angka proteksi ... 137

Lampiran 17 Perhitungan efektif dosis tengah (ED₅₀) hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol ... 138
INTISARI

Telah dilakukan penelitian tentang efek hepatoprotektif jus buah apel hijau (Pyrus malus L.) pada mencit jantan terinduksi parasetamol dengan tujuan memperoleh bukti ilmiah efek hepatoprotektif jus buah apel hijau (Pyrus malus L.) dan besarnya dosis efektif hepatoprotektifnya.

Penelitian ini adalah eksperimental murni yang dikerjakan mengikuti rancangan acak lengkap pola searah. Tiga puluh lima ekor mencit jantan dibagi secara acak dalam 7 kelompok dengan jumlah yang sama. Kelompok I diberi CMC 1% 0,33 g/kgBB. Kelompok II diberi jus buah apel hijau 25,0 g/kgBB. Kelompok III diberi suspenisi parasetamol 0,250 g/kgBB. Kelompok IV-VII berturut-turut diberi jus buah apel hijau dosis 0,39 g/kgBB; 1,56 g/kgBB; 6,25 g/kgBB; 25,0 g/kgBB secara oral sekali sehari selama 6 hari berturut-turut. Hari ke-7 diberi suspenisi parasetamol 0,250 g/kgBB. Dua puluh empat jam kemudian, mencit diambil darahnya melalui sinus orbitalis mata untuk ditetapkan aktivitas GPT-serum. Kemudian, mencit dikorbankan dan hatinya diambil untuk pembuatan preparat histologi, kemudian diberi skor menurut derajat kerusakannya. Data aktivitas GPT-serum dan skoring histopatologi dianalisis dengan Levene Test dan uji Kolmogorov-Smirnov, kemudian dilanjutkan dengan uji Kruskal-Wallis dan Mann-Whitney dengan taraf kepercayaan 95%. Dosis efektif tengah (ED₅₀) dihitung dengan analisis probit.

Hasil penelitian menunjukkan bahwa jus buah apel hijau dosis 0,39 g/kgBB; 1,56 g/kgBB; 6,25 g/kgBB; dan 25,0 g/kgBB mampu memberikan efek hepatoprotektif berturut-turut sebesar 38,0%; 54,99%; 68,76%; dan 83,31%. Analisis skoring histopatologi menunjukkan bahwa kelompok IV, V, VI, dan VII mempunyai kondisi hati yang lebih baik dibanding kontrol positif yang tercermin dari persen angka proteksi berturut-turut sebesar 16,67%; 36,67%; 50,0%; dan 63,33%. Kesimpulan, jus buah apel hijau mempunyai efek hepatoprotektif pada mencit jantan terinduksi parasetamol. Nilai ED₅₀ hepatoprotективnya adalah 1,164 g/kgBB.
ABSTRACT

An experimental research on the hepatoprotective effect of green apple (Pyrus malus L.) juice has been conducted on male mice induced by acetaminophen that is aimed to get scientific evidence and estimated quantity of hepatoprotective effect of green apple juice.

A pure experimental research was done following the direct sampling design. Thirty five male mice were divided into 7 groups at the same number. First group was given CMC 1% 0.33 g/kgBB. Second group was given green apple juice dose 25.00 g/kgBB. Third group was given suspension of acetaminophen dose 0.250 g/kgBB. The fourth to seventh groups were given green apple juice doses of 0.39 g/kgBB; 1.56 g/kgBB; 6.25 g/kgBB; dan 25.00 g/kgBB respectively orally once for 6 days. On the seventh day, they were given suspension of acetaminophen dose 0.250 g/kgBB. After 24 hours, blood of mice on all groups was sampled at the sinus orbitalis of eyes to measure the activity GPT-serum level. The mice were sacrificed and their liver were taken for histopathology observation, then scored based on the stage of hepatic destruction. GPT-serum activity and histopathology scoring data was analyzed by Lvene test and Kolmogorov-Smirnov test, then continued by Kruskal-Wallis and Mann-Whitney test at 95% confidence level. The median effective dose (ED$_{50}$) were calculated by using probit analysis.

The result of this study showed that green apple juice doses of 0.39 g/kgBB; 1.56 g/kgBB; 6.25 g/kgBB; and 25.00 g/kgBB had the hepatoprotective effect of 38.0%; 54.99%; 68.76%; and 83.31% respectively. The analysis of scoring histopathology showed that the liver condition of the fourth to seventh groups were better than positif control with protection values in precentage 16.67%; 36.67%; 50.0%; and 63.33% respectively. Conclusion, green apple juice has the hepatoprotective effect on male mice induced by acetaminophen. Its hepatoprotective median effective dose (ED$_{50}$) was 1.104 g/kgBB.
BAB I
PENGANTAR

A. Latar Belakang

Konsumsi jus apel sering dijumpai dalam masyarakat. Buah apel diketahui mengandung pektin yang berserat tinggi, saponin, flavonoid, dan kandungan kimia lain berupa kalsium, fosfor, zat besi, natrium, kalium, vitamin B kompleks, vitamin A, dan vitamin C (Anonim, 2001; Anonim, 2002). Menurut Robinson (1991), efek flavonoid terhadap organisme sangat banyak macamnya sehingga tumbuhan yang mengandung flavonoid dapat dipakai dalam pengobatan. Flavonoid bertindak sebagai penampung yang baik radikal hidroksil dan superoksida. Misalnya pada peristiwa peroksidasi lipid, peran flavonoid tersebut dapat melindungi lipid membran terhadap reaksi yang merusak. Aktivitas
antioksidannya mungkin dapat menjelaskan penggunaan flavonoid tertentu yang terkandung dalam tumbuhan sebagai salah satu alternatif terapi gangguan fungsi hati yang digunakan secara tradisional. Berdasarkan keterangan tersebut maka timbul ide untuk meneliti efek hepatoprotektif yang ditimbulkan oleh jus buah apel hijau (*Pyrus malus* L.).

1. Permasalahan

Berdasarkan latar belakang yang dikemukakan tersebut maka timbul permasalahan penelitian yang dirumuskan sebagai berikut:

a. apakah jus buah apel hijau (*Pyrus malus* L.) mempunyai efek hepatoprotektif pada mencit jantan terinduksi parasetamol?

b. berapa besar kisaran dosis efektif hepatoprotektif jus buah apel hijau (*Pyrus malus* L.) pada mencit jantan terinduksi parasetamol?

2. Keaslian penelitian

3. Manfaat penelitian

a. Manfaat teoritis

Penelitian mengenai efek hepatoprotektif jus buah apel hijau (*Pyrus malus* L.) pada mencit jantan terinduksi parasetamol diharapkan dapat bermanfaat dalam pengembangan ilmu kefarmasian dan pengetahuan tentang tumbuhan
berkhasiat obat di Indonesia serta memberi kontribusi dalam upaya pengembangan obat baru, khususnya terhadap pencegahan penyakit hati (hepatitis).

b. Manfaat praktis

B. Tujuan Penelitian

1. **Tujuan umum**

 Penelitian ini diakukan untuk menggali informasi mengenai tumbuh-tumbuhan yang berkhasiat obat demi pengembangan ilmu kefarmasian.

2. **Tujuan khusus**

 Penelitian ini dikerjakan untuk mendapatkan bukti ilmiah efek hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol dan menentukan besarnya dosis efektif hepatoprotektif jus buah apel hijau tersebut (ED$_{50}$-nya).
BAB II
PENELAAHAN PUSTAKA

A. Anatomi dan Fisiologi Hati

Hati memiliki dua lobus utama, kanan dan kiri. Setiap lobus hati terbagi menjadi struktur-struktur yang dinamakan lobulus dan merupakan unit mikroskopis dan fungsional organ (Price dan Wilson, 1994). Hati manusia berisi 50.000 sampai 100.000 lobulus berbentuk silindris dengan panjang beberapa millimeter dan berdiameter 0,8 sampai 2 milimeter (Guyton dan Hall, 1996). Setiap lobulus merupakan bentuk heksagonal yang terdiri atas lempeng-lempeng sel hati yang berbentuk kubus yang tersusun radial mengelilingi vena centralis. Diantara lempengan sel hati terdapat kapiler-kapiler yang dinamakan sinusoid, yang merupakan cabang vena porta dan arteria hepatica. Darah yang terdapat pada

Fungsi detoksikasi dilakukan oleh enzim-enzim hati yang melakukan oksidasi, reduksi, hidrolisis, atau konjugasi zat-zat yang kemungkinan membahayakan, mengubahnya menjadi zat-zat yang secara fisiologis tidak aktif (Price dan Wilson, 1994). Untuk menjalankan fungsi tersebut, hati dilengkapi dengan sistem vaskuler hepatika, sistem retikuloendotelial, sistem saluran empedu, dan sistem parenkim hepatika (Guttoa, 1983). Sistem vaskuler hepatika

Hatı sering mengalami kerusakan, tapi beruntung bahwa alat ini mempunyai cadangan fungsional yang luar biasa (Robbins dan Kumar, 1995). Dalam keadaan normal, kira-kira 80% hatı dapat dibuang tanpa mempengaruhi fungsinya. Karena cadangan fungsional yang luar biasa ini, gagal hatı terjadi hanya ketika lebih dari 80% organ hatı dirusak (Chandrasoma dan Taylor, 1991).

Gambar 1. Struktur dasar hatı (Lingappa, 1995)
B. Patofisiologi Hepatitis Akut dan Sasaran Terapi

Telah ditemukan lima kategori virus hepatitis yang dapat menyebabkan hepatitis akut, antara lain: virus hepatitis A atau HAV (hepatitis infeksi atau hepatitis short-incubation); virus hepatitis B atau HBV (hepatitis serum atau hepatitis long-incubation); virus hepatitis C atau HCV (hepatitis non-A, non-B atau hepatitis posttransfusion); virus hepatitis D atau HDV (disebut juga HBV...

Toksikan (senyawa kimia ataupun obat-obatan dalam dosis tinggi) dapat menyebabkan berbagai jenis efek toksik pada berbagai organela sel dan menyebabkan berbagai kerusakan hati. Beberapa penelitian terbaru melaporkan bahwa 15-40% kasus penyakit hati akut diperantai oleh obat-obatan (Cadman, 2000). Menurut Zimmerman (1978), kerusakan hati akut dapat dibedakan atas tiga macam, yakni:

a. sitiotoksik (hepatoseluler) yang berhubungan dengan kerusakan parenkim sel hati, berupa steatosis (degenerasi melemak) dan atau nekrosis sel hati,
b. kolestatik, berupa hambatan aliran empedu dengan sedikit atau tanpa kerusakan sel-sel hati, dan
c. campuran, berupa kombinasi dari kedua macam kerusakan sitotoksik dan kolestatik.

Lu (1995) menjelaskan jenis-jenis kerusakan hati sebagai berikut:

1. steatosis

2. nekrosis hati

Zimmerman (1978) mengelompokkan nekrosis parenkim ke dalam tiga kelompok atas dasar lokasi dan luasnya, yaitu:

a. nekrosis fokal atau difus, yang terjadi pada sekelompok kecil sel parenkim hati,

b. nekrosis zonal, yang dapat terjadi pada sekelompok sel dalam zona setral, perifer (periportal), ataupun midzonal dari lobulus tergantung agen hepatotoksin, dan

c. nekrosis massif, yang terjadi pada seluruh sel dalam lobulus hati.

3. Kolestasis

4. Sirosis

C. Kriteria Obat Ideal Hepatitis

D. Hepatotoksin

Klatskin (1975) membedakan hepatotoksin ke dalam dua kelompok yaitu: kelompok pertama adalah senyawa yang dapat mengakibatkan penyakit hati dan kelompok kedua adalah senyawa yang mampu menghasilkan senyawa lain yang menginduksi terjadinya penyakit hati. Menurut Zimmerman (1978), hepatotoksin dapat dibedakan ke dalam dua golongan berdasarkan mekanisme timbulnya penyakit hati, yaitu:

1. hepatotoksin terramalkan

langsung, maksudnya obat induk atau bentuk metabolitnya dalam menimbulkan luka hepatik dengan cara mengganggu jalur metabolik-khas (misalnya tetrasiklin), atau mengganggu jalur ekskresi hepatik (misalnya rifampisin) (Donatus, 1992). Kerusakan yang ditimbulkan bergantung dosis dan dapat dicobakan pada hewan uji dan menyebabkan lesi yang mirip manusia (Garcia, 1992; Zimmerman, 1978).

2. hepatotoksin tak terramalkan

Senyawa yang termasuk golongan ini yaitu senyawa yang mempunyai sifat tidak toksik pada hati, akan tetapi dapat menyebabkan penyakit hati pada individu yang hypersensitif terhadap terhadap senyawa tersebut yang diperantri oleh mekanisme alergi (misalnya sulfonamida, halotan) atau karena keabnormalan metabolik menuju penumpukan metabolit toksik (misalnya iproniazid, isoniazid) (Zimmerman, 1978; Donatus, 1992). Kerusakan hati yang ditimbulkan oleh hepatotoksin golongan ini tidak dapat diprakirakan dan tak tergantung dosis (Donatus, 1992).

E. Parasetamol

Parasetamol mengalami eliminasi terutama melalui proses biotransformasi di hati dan ekskresi melalui urin. Pada kisaran dosis terapi (0,5-1 g, 3-4 kali sehari) sebagian besar parasetamol terkonjugasi dengan asam glukoronat dan sulfat, sisanya oleh sistem sitokrom P-450 MFO hati, dioksidasi menjadi metabolit yang reaktif, N-asetil-para-benzokuinonimina (NAPBKI) (Grahame-Smith dan Aronson, 1992, Gibson dan Skett, 1991). Dalam keadaan normal, metabolit reaktif NAPBKI tersebut secara prinsip dapat secara cepat dinonaktifkan melalui konjugasi dengan glutation (GSH) yang dikatalis oleh glutation S-transferase (GST), misalnya GSTP1, menjadi produk yang lebih larut dalam air, konjugat sistein dan merkapturat (Henderson, Wolf, Kitteringham, Powell, Otto, dan Park, 2000; Waters dkk, 2001).

Hapatotoksisisitas parasetamol dapat terjadi pada pemakaian dosis tunggal sebesar 10-15 gram (150-200 mg/kgBB) (Lin dan Lu, 1997). Pada keadaan ini, jalur glukoronidasi dan sulfataasi akan jenuh sehingga jalur sitokrom P-450 menjadi sangat penting. Namun, lama-kelamaan jalur ini juga akan jenuh karena jumlah GSH hati yang terpakai lebih besar dari yang dibentuk ulang sehingga terjadi penumpukan metabolit reaktif NAPBKI (Mirochnitchenko, Weisbrot-
Lefkowitz, Reuhl, Chen, Yang, dan Inouye, 1999). Dengan kata lain, jika kandungan GSH hati dapat dihabiskan atau paling tidak berkurang menjadi 20-30% harga normalnya, maka NAPBKI akan berikatan dengan makromolekul protein sel hati, mengawali mekanisme tingkat molekul kesitotoksikan sel (Wijoyo, 2001).

Hepatotoksik parasetamol telah diketahui dipertarair oleh suatu metabolit reaktif, NAPBKI. Metabolit ini disamping bersifat elektrofil (mampu mengarikkan makromolekul jaringan melalui antaraksi kovalen) juga bersifat oksidan (mampu mengoksidkan makromolekul jaringan melalui antaraksi nirkovalen) (Gibson, Pumford, Samokyszyn, dan Hinson, 1996).

awal luka jaringan, yaitu terbentuknya makrofag aktif yang akan membangkitkan anion superoksida (Wijoyo, 2001).

Selain itu, tekanan oksidatif juga memungkinkan terganggunya homeostasis Ca$^{2+}$ dalam sel. Pengurangan kandungan GSH-sitosol mengakibatkan perubahan kandungan tiol protein (karena arilasi atau oksidasi oleh toksin kimia) dan atau status NADPH/NADP. Akibatnya terjadi peningkatan Ca$^{2+}$ sitosol, sehingga enzim fosfolipase atau protease aktif, lebih lanjut morfologi sitosekeletal hepatosit kacau (blebbing membran plasma). Adanya kenaikan Ca$^{2+}$ mungkin akan mengaktifkan endonuklease, fragmentasi DNA yang ekstensif, gangguan fungsi mitokondria, dan akhirnya kematian sel (Vandenbergh, 1996 cit Wijoyo, 2001).

Berdasarkan penelusuran hipotesis mekanisme kesitotoksikan parasetamol (lihat gambar 4) maka pencegahan hepatotoksisitas parasetamol dapat dilakukan dengan dua kemungkinan: (1) penghambatan zat antara radikal NAPSKI, spesies oksigen reaktif, dan metabolit reaktif parasetamol; (2) peningkatan proses penetralan metabolit reaktif parasetamol (Wijoyo, 2001). Penghambatan spesies oksigen reaktif dapat dilakukan dengan pemberian antioksidan, seperti vitamin E, karotenoid, vitamin C, dan senyawa golongan flavonoid (Oldham dan Bowen, 1998 cit Wijoyo, 2001; Craig, 1999) serta enzim antioksidan alamiah seperti superoksid dismutase (SOD) dan glutation peroksidase (GP) (Mirochnitchenko dkk, 1999).
Gambar 4. Rangkuman sistem peniraktifan dan pergaktifan hayati parasetamol dan aneka kemungkinan mekanisme kehepatotoksikan (Doratus, 1994)
F. Metode Uji Hepatotoksitisitas

Studi tentang senyawa-senyawa yang dapat menyebabkan efek toksik pada hati dapat dilakukan secara *invivo* maupun *invitro*. Model *invivo* dapat menunjukkan bahwa senyawa eksogen secara nyata menimbulkan kerugian pada hati berdasarkan pada tanda-tanda fisiologi yang terjadi. Model *invitro* menjelaskan mekanisme kerusakan yang terjadi.

Zimmerman (1978) mengemukakan beberapa parameter yang dapat digunakan untuk mengevaluasi kerusakan hati antara lain: (1) uji enzim serum; (2) pemeriksaan asam amino dan protein; (3) perubahan penyusun kimia dalam hati; (4) uji ekskretori hati; dan (5) analisis histologi.

1. uji enzim serum

2. pemeriksaan asam amino dan protein

Pemeriksaan asam amino dan protein penting dilakukan karena metabolisme asam amino di hati membentuk ammonia dan ureum terjadi secara lebih lambat dan meningkatkan kadar globulin (Zimmerman, 1978).

3. perubahan penyusun kimia dalam hati

4. uji ekskretori hati

5. analisis histologi hepatik

Sel hati yang mengalami kerusakan sitotoksik tampak berbeda dengan sel-sel hati normal. Perlemakan dalam sel hati terlihat sebagai ruang membulat yang tidak tercat hemaktosilin. Sel dari jaringan nekrotik seluruhnya berwarna kemerahan dan tidak mengambil warna hemaktosilin eosi. Perubahan inti sel
tersebut di antaranya disebabkan oleh penggumpalan kromatin dan pengerutan inti, sehingga inti tampak lebih kecil serta gelap (piknosis) atau pecahnya membran inti (karioreksis) sehingga inti sel yang berupa fragmen-fragmen kecil tumpah ke dalam sitoplasma. Kemungkinan lainnya adalah kariolisis, yakni pelarutan kromatin secara enzimatis sehingga inti hanya terlihat sebagai ruangan kosong yang dikelilingi oleh membran inti (Wilson dan Lester, 1992 cit Rambung, 2002).

G. Buah Apel Hijau (*Pyrus malus* L.)

1. Sistematika

Kedudukan tanaman apel hijau (*Pyrus malus* L.) dalam sistematika tumbuhan adalah sebagai berikut:

Divisi : Spermatophyta

Subdivisi : Angiospermae

Kelas : Dicotyledonae

Bangsa : Rosales

Suku : Rosaceae

Marga : Pyrus

2. Morfologi tanaman apel hijau

Menurut Anonim (2002), morfologi tanaman apel hijau dapat dideskripsikan sebagai berikut:

a. habitus: sosoknya berupa tanaman perdu dengan tinggi 3-5 m.

c. daun: merupakan daun tunggal, bulat telur, ujung dan pangkal runcing, tepi bergerigi, berbulu, berseling, panjang 3-15 cm, lebar 2-6 cm, pertulangan menyirip, dan berwarna hijau. Menurut Soelarso (1997), warna permukaan daun bagian atas hijau tua, tulang daun berwarna hijau muda, dan tangkai daun berwarna hijau kelabu.

d. bunga: majemuk, bentuk malai di ujung cabang, kelopak hijau, berbulu, berbagi lima, benang sari banyak berwarna putih, kepala sari kuning kecokelatan, putik satu berwarna putih kekuningan. Menurut Soelarso (1997), bunganya bertangkai pendek, menghadap ke atas, bertandain dan pada tiap tandan terdapat 7-9 bunga, dan bunga tumbuh pada ketiak daun.
e. akar : berakar tunggang dan warnanya putih kecokelatan.

f. buah : buni, bulat, ujung dan pangkal berlekuk, dan hijau kekuningan.

g. biji : bijinya kecil, pipih, dan coklat kehitaman.

3. Ekologi dan penyebaran

Tanaman ini tumbuh baik pada ketinggian 600-1100 m diatas permukaan laut. Suhu memegang peranan penting dalam pertumbuhan apel, pada suhu yang tepat maka pertumbuhan tanaman apel akan optimal. Suhu maksimal yang dikehendaki apel ialah 27° C dan suhu minimum sekitar 16° C. Kelembaban udara yang dikehendaki tanaman ini berkisar antara 75-85% (Untung, 1994).

4. Kandungan kimia

5. Khasiat dan kegunaan

H. Flavonoid

1. Pendahuluan

Flavonoid merupakan senyawa metabolit sekunder, yaitu senyawa yang dihasilkan oleh beberapa tumbuhan, tetapi bukan merupakan ciri keberadaan tumbuhan tersebut (Manitto, 1980 cit Linawati, 2002). Secara struktural, lebih dari 4000 jenis flavonoid telah teridentifikasi dalam tumbuhan. Pada tahun 1903 suatu senyawa baru berhasil diidentifikasi dari jeruk, yang dipercaya sebagai salah satu senyawa dari kelompok vitamin, dan diberi nama vitamin P. Belakangan diketahui bahwa senyawa tersebut adalah flavonoid (rutin), selanjutnya banyak penelitian difokuskan pada isolasi senyawa-senyawa golongan flavonoid dan mekanisme aksinya (Middleton, Kandaswami, dan Theoharides, 2000).

![Gambar 5. Kerangka flavonoid (5a) dan sistem penomoran turunan flavonoid (5b) (Robinson, 1991)](image-url)
Efek flavonoid terhadap organisme sangat banyak macamnya sehingga tumbuhan yang mengandung flavonoid dapat dipakai dalam pengobatan. Flavonoid bertindak sebagai penampung yang baik radikal hidroksil dan superoksida. Misalnya pada peristiwa peroksidasi lipid, peran flavonoid tersebut dapat melindungi lipid membran terhadap reaksi yang merusak. Aktivitas antioksidannya mungkin dapat menjelaskan penggunaan flavonoid tertentu yang terkandung dalam tumbuhan sebagai salah satu alternatif terapi gangguan fungsi hati yang digunakan secara tradisional. (Robinson, 1991).

2. Aktivitas antioksidan

Beberapa efek merugikan dari spesies oksigen reaktif pada sistem biologi meliputi peroksidasi membran lipid, bahaya oksidasi asam nukleat dan karbohidrat, serta oksidasi sulfhidril dan bagian lain dari protein. Pertahanan terhadap spesies oksigen reaktif dilakukan secara enzimatik maupun nonenzimatik. Antioksidan enzimatik meliputi superoksid dismutase (SOD), catalase, dan glutatian peroksidase. Antioksidan nonenzimatik umumnya dapat menangkap radikal, baik organik maupun anorganik. Antioksidan ini dibagi menjadi antioksidan water-soluble dan lipid-soluble, tergantung tempat aksinya, pada fase air atau bagian lipofil dari membran sel. Antioksidan hidrofil termasuk
di dalamnya vitamin C dan urate sedangkan retinoid, karotenoid, flavonoid, vitamin A, termasuk antioksidan lipofil (Middleton dkk, 2000).

Beberapa penelitian melaporkan bahwa aktivitas antioksidan flavonoid ditentukan oleh gugus tertentu dalam struktur flavonoid tersebut. Karakteristik struktur flavonoid yang mampu memberikan efek antioksidan antara lain karena adanya (1) gugus *catechol* (*0*-dihydroxy) pada cincin B yang mempunyai sifat sebagai donor proton, (2) gugus *pyrogallol* (trihydroxy) pada cincin B, (3) gugus 4-*oxo* pada cincin heterosiklik, (4) gugus 3-OH pada cincin heterosiklik, dan (5) gugus 5-OH dan 7-OH yang potensial pada keadaan tertentu (Middleton dkk, 2000). Secara umum dapat dikatakan bahwa senyawa turunan flavonoid mampu memberikan efek antioksidan antara lain karena adanya gugus fenolik dalam struktur molekulnya. Ketika senyawa-senyawa ini bereaksi dengan radikal bebas maka terbentuk radikal baru yang distabilisasi oleh efek resonansi inti aromatik (Cuvelier, 1991 cit Hertiani, 2000). Sebagai contoh, dilaporkan bahwa kuersetin memperlihatkan kemampuan penangkal radikal yang sangat efektif karena mempunyai gugus *catechol* (*0*-dihydroxy) pada cincin B sedangkan pada mirisetin dilaporkan bahwa aktivitasnya meningkat dengan adanya 3 gugus hidroksil pada cincin B (gugus *pyrogallol*) (Middleton dkk, 2000). Selanjutnya, dilaporkan bahwa spesies oksigen reaktif yang dapat dinetralkan atau berikatan dengan flavonoid antara lain, anion superoksida (*O_2^-*), radikal perhidroksi (*HO_2^-*), radikal hidroksil (*OH*), hidrogen peroksida (*H_2O_2*), radikal alkoksil (*RO^-*) seperti radikal lipid (*LO^-*), radikal peroksil (*ROO^-*) seperti radikal peroksil lipid (*LOO^-*), dan singlet oksigen (*^1O_2*) (Middleton dkk, 2000).
3. Pengaruh flavonoid terhadap spesies oksigen reaktif yang muncul akibat pengaktifan sel fagosit

Pengaktifan sel fagosit seperti monosit, neutrofil, eosinofil, dan makrofag dapat membangkitkan anion superoksida (O$_2^-$). Superoxida ini dapat diubah menjadi H$_2$O$_2$ yang kemudian menghasilkan radikal hidroksil (·OH) melalui reaksi transisi ion logam. Radikal hidroksil (·OH) sangat reaktif dibanding O$_2^-$ dan H$_2$O$_2$ serta dapat menyerang material-material tertentu dalam sistem biologi (Middleton dkk, 2000).

Dilaporkan bahwa beberapa golongan senyawa flavonoid dapat menangkal spesies oksigen reaktif di atas. Antioksidan catechins (flavon) yang diisolasi dari teh hijau China mampu menangkal spesies oksigen reaktif O$_2^-$ dan H$_2$O$_2$ melalui xanthine-xanthine oxidase system. Selain itu, beberapa penelitian juga menunjukkan bahwa flavonoid dapat menghambat spesies oksigen reaktif yang ditimbulkan oleh pengaktifan neutrofil. Faktor yang menentukan aktivitas penghambatan ini adalah gugus OH pada cincin B dari struktur molekul flavonoid (Middleton dkk, 2000).

4. Efek flavonoid pada peroksidasi lipid

Tekanan oksidatif secara molekular dapat membahayakan sistem biologi. Protein dan DNA merupakan target utama kerusakan selular akibat tekanan oksidatif tersebut. Target lain dari serangan radikal bebas dalam sistem biologi adalah lipid membran sel. Peroksidasi lipid dapat menimbulkan implikasi pada beberapa kondisi patologis di antaranya, hepatotoksisitas, hemolisis, kanker, tumor, dan inflamasi (Middleton dkk, 2000).

Induksi peroksidasi lipid dapat terjadi sebagai berikut:

- **Permulaan**
 \[LH + ·OH \rightarrow H_2O + L' \]

- **Perbanyakan**
 \[L' + O_2 \rightarrow LOO' \]
 \[LOO' + LH \rightarrow LOOH + L' \]

- **Pengakhiran**
 \[LOO' + LOO' \rightarrow \text{produk irradikal} \]
 \[L' + L' \rightarrow \text{produk nirradikal} \]
 \[LOO' + L' \rightarrow \text{produk nirradikal} \]

Peroksidasi lipid dapat dicegah pada tahap permulaan oleh penangkal radical bebas sedangkan tahap perbanyakan dapat diputuskan oleh penangkal radical peroksi, seperti antioksidan fenolik. Aktivitas antioksidan flavonoid sebagai pemuutus rantai reaksi dapat ditunjukkan seperti di bawah ini:

\[LOO' + FL\text{-OH} \rightarrow LOOH + FL\text{-O'} \]

di mana FL\text{-OH} merupakan senyawa flavonoid. Terminasi radical lipid (L'), radikal peroksил lipid (LOO') dan radikal alkoksil (LO') oleh antioksidan fenolik ditunjukkan seperti di bawah ini:

\[LOO'/L' / LO' + A\text{-OH} \rightarrow LOOH/LH/LOH + AO' \]

1. Landasan Teori

Parasetamol termasuk salah satu obat yang dapat menimbulkan kerusakan hati dan terbukti dapat menyebabkan nekrosis sentrolohuber baik pada hewan uji maupun manusia (Waters, Wang, Redmond, Wu, Kay, dan Bouchier-Hayes, 2001;
Donatus, 1992). Pada kisaran dosis terapi, sebagian besar parasetamol terkonjugasi dengan asam glukoronat dan sulfat, sisanya oleh sistem sitokrom P-450 MFO hati, dioksidasi menjadi metabolit yang reaktif, N-asetil-para-benzokuinoniminina (NAPBKI) (Grahame-Smith dan Aronson, 1992; Gibson dan Skett, 1991). Dalam keadaan normal, metabolit reaktif NAPBKI tersebut secara prinsip dapat secara cepat dinonaktifkan melalui konjugasi dengan glutation (GSH) yang dikatalis oleh glutation S-transferase (GST), misalnya GSTP1, menjadi produk yang lebih larut dalam air, konjugat sistein dan merkapturat (Henderson dkk, 2000; Waters dkk, 2001). Pada pemberian dosis toksik, jalur glukoronidasi dan sulfatasi akan jenuh sehingga jumlah GSH hati yang terpakai lebih besar dari yang dibentuk ulang sehingga terjadi penumpukan metabolit reaktif NAPBKI (Katzung, 1989).

Metabolit reaktif NAPBKI dilaporkan dapat menimbulkan kerusakan hati melalui ikatan kovalen dengan makromolekul sel hati. Selain diperantarai oleh NAPBKI, kehepatotoksikan parasetamol juga terjadi melalui jalur tekanan oksidatif. Melalui jalur tekanan oksidatif ini, kehepatotoksikan parasetamol diyakini diperantarai oleh adanya oksigen reaktif atau radikal bebas, seperti anion superoksid, hidrogen peroksid, dan radikal hidroksil (Wijoyo, 2001).

Penghambatan spesies oksigen reaktif dapat dilakukan dengan pemberian antioksidan, seperti vitamin E, karotenoid, vitamin C, dan senyawa golongan flavonoid (Oldham dan Bowen, 1998 cit Wijoyo, 2001; Craig, 1999). Salah satu kandungan buah apel hijau (Pyrus malus L.) adalah flavonoid (Anonim, 2002) yang merupakan suatu antioksidan, termasuk antioksidan lipofil (Middleton dkk,
Aktivitas antioksidan flavonoid ditentukan oleh gugus tertentu dalam strukturnya. Karakteristik struktur flavonoid yang mampu memberikan efek antioksidan antara lain karena adanya (1) gugus catechol (0-dihydroxy) pada cincin B, (2) gugus pyrogallol (trihydroxy) pada cincin B, (3) gugus 4-oxo pada cincin heterosiklik, (4) gugus 3-OH pada cincin heterosiklik, dan (5) gugus 5-OH dan 7-OH. Secara umum dapat dikatakan bahwa senyawa turunan flavonoid mampu memberikan efek antioksidan antara lain karena adanya gugus fenolik dalam struktur molekulnya. Ketika senyawa-senyawa ini bereaksi dengan radikal bebas maka terbentuk radikal baru yang distabilisasi oleh efek resonansi inti aromatik (Cuvelier, 1991 cit Hertiani, 2000; Middleton dkk, 2000). Dilaporkan bahwa spesies oksigen reaktif yang dapat dinetralkan atau berikatan dengan flavonoid antara lain, anion superoksida (O_2^−), radikal perhidroksi (HO_2^−), radikal hidroksil (•OH), hidrogen peroksida (H_2O_2), radikal alkoksil (RO^−) seperti radikal lipid (LO^−), radikal peroksil (ROO^−) seperti radikal peroksil lipid (LOO^−), dan singlet oksigen (^1O_2) (Middleton dkk, 2000).

J. Hipotesis

Jus buah apel hijau (*Pyrus malus* L.) mempunyai efek hepatoprotektif pada mencit jantan terinduksi parasetamol.
BAB III
METODOLOGI PENELITIAN

A. Jenis dan Rancangan Penelitian

Penelitian ini termasuk jenis penelitian eksperimental murni dengan rancangan acak lengkap pola searah.

B. Variabel Penelitian dan Definisi Operasional

1. Variabel utama
a. Variabel bebas : dosis jus buah apel hijau (*Pyrus malus* L.). Dosis jus buah apel hijau adalah sejumlah (gram) jus buah apel hijau tiap satuan kg berat badan subyek uji yang bersangkutan. Jus buah apel hijau dibuat dengan mem-blender sejumlah (gram) buah apel hijau (tidak termasuk biji) dalam sejumlah (ml) aquades sampai volume 100 ml.

b. Variabel tergantung : efek hepatoprotektif jus buah apel hijau terhadap sel hati mencit terinduksi parasetamol, ditandai dengan tolok ukur kuantitatif berupa penurunan aktifitas GPT-serum (*Glutamat Piruvat Transaminase*) dan tolok ukur kualitatif berupa gambaran histopatologi sel hati mencit.

2. Variabel pengacau terkendali
a. Subyek uji berupa mencit jantan, galur Swiss, berat badan 20-30 gram, umur antara 2 - 3 bulan.

b. Bahan uji yang digunakan berupa buah apel hijau yang sehat (tidak busuk) dan diperoleh dari perkebunan apel Batu, Malang, Jawa Timur.
c. Frekuensi pemberian jus buah apel hijau, 1x sehari selama 6 hari berturut-turut, dengan waktu pemberian yang sama.

3. Variabel pengacau tak terkendali
a. kondisi patologi hewan uji.

C. Subyek dan Bahan Penelitian

1. Subyek penelitian
Hewan uji yang digunakan berupa mencit jantan galur Swiss, umur 2-3 bulan dengan berat badan berkisar antara 20-30 gram, yang diperoleh dari Laboratorium Farmakologi dan Toksikologi, Fakultas Farmasi, Universitas Sanata Dharma, Yogyakarta.

2. Bahan penelitian

b. Bahan hepatotoksin yang digunakan berupa parasetamol, berwarna putih, tidak berbau, dan berasa pahit yang diperoleh dari PT. Konimex, Solo.

c. Bahan pensuspensi parasetamol berupa serbuk CMC (*Carboxy Methyl Celulose*) berwarna putih, terdispersi dalam air membentuk gel diperoleh dari Laboratorium Farmakokinetika (Biofarmasetika), Fakultas Farmasi, Universitas Sanata Dharma, Yogyakarta.
d. Aquades diperoleh dari Laboratorium Farmakologi dan Toksikologi, Fakultas Farmasi, Universitas Sanata Dharma, Yogyakarta.

e. Pereaksi siap pakai kit GPT-ALAT (Daisy Germany) diperoleh dari Laboratorium Patologi Klinik, Fakultas Kedokteran, Universitas Gadjah Mada, Yogyakarta.

f. Formalin 10 %, xilol, alkohol, lilin cetak, zat warna hepatoksilin, dan eosin (E. Merck, Darmstadt, Germany) diperoleh dari Laboratorium Patologi Anatomi, Fakultas Kedokteran, Universitas Gadjah Mada, Yogyakarta.

D. Alat Penelitian

Alat yang dipakai dalam penelitian ini meliputi: alat pembuat jus (blender) merk National MX-J210GN dengan 2 tingkat kecepatan, jarum tuberkulin (injeksi per-oral), spuit injeksi, pipa kapiler, alat bedah, vitalab mikro versi 1,0 *user manual* (E. Merck, Darmstadt, Germany), alat-alat gelas (Pyrex), timbangan elektrik (Mettler Teledo, Switzerland), mikrosentrifugasi M0010966 (Denver Instrument, USA), mikroskop (Olympus CH 30, Japan), kamera (Olympus SC 35, Japan).

E. Tata Cara Penelitian

1. **Determinasi tanaman apel hijau**

2. Penentuan konsentrasi jus buah apel hijau dan dosis maksimalnya

Konsentrasi jus buah apel hijau yang akan digunakan dalam penelitian ini adalah konsentrasi maksimal jus buah apel hijau yang dapat dipejankan pada mencit melalui jarum oral. Berdasarkan orientasi yang dilakukan, jus buah apel hijau dengan konsentrasi 75% merupakan konsentrasi maksimal yang dapat dipejankan pada mencit melalui jarum oral. Dengan demikian, dosis maksimal jus buah apel hijau pada mencit jantan dapat ditentukan dengan perhitungan sebagai berikut:

\[
V = \frac{D_{\text{maks}} \times BB}{C}
\]

\[
1 \text{ ml} = \frac{D_{\text{maks}} \times 30 \text{ g}}{75\%}
\]

\[
D_{\text{maks}} = 25,0 \text{ g/kgBB}
\]

Jadi, dosis maksimal jus buah apel hijau pada mencit jantan yang digunakan dalam penelitian ini adalah 25,0 g/kgBB.

3. Pembuatan jus buah apel hijau

Jus buah apel hijau dibuat dengan cara mem-blender 75 g buah apel hijau dalam 100 ml aquades selama 3 menit; 2 menit dengan kecepatan 1 dan dilanjutkan dengan kecepatan 2 selama 1 menit. Sebelum di-blender buah apel hijau dicuci dengan air mengalir, dipotong kecil-kecil bersama dengan kulitnya, sedangkan bijinya diambil.

4. Pembuatan suspending agent CMC 1%

Suspending agent CMC 1% dibuat dengan cara mendispersikan 1 gram CMC yang telah ditimbang seksama ke dalam air mendidih sampai volume 100,0 ml. Suspensi CMC ini digunakan untuk membuat suspensi parasetamol.
5. Pembuatan suspensi parasetamol

Suspensi parasetamol dalam CMC 1% dibuat dengan cara mensuspensikan sejumlah gram parasetamol yang telah ditimbang sesama ke dalam CMC 1%. Banyaknya parasetamol yang disuspensikan dalam CMC 1% disesuaikan dengan dosis parasetamol yang digunakan.

6. Uji pendahuluan

a. Penetapan dosis hepatotoksik parasetamol

Dosis hepatotoksik parasetamol pada mencit diketahui 0,200 g/kgBB – 0,300 g/kgBB (Lin dan Lu, 1997). Donatus (1994) menjelaskan bahwa dosis 0,200 g/kgBB memberikan efek subhepatotoksik dan dosis 0,300 g/kgBB memberikan efek hepatotoksik. Dengan demikian, empat peringkat dosis yang diujikan pada mencit jantan diperoleh dengan menurunkan dosis hepatotoksik parasetamol dari dosis 0,300 g/kgBB dengan kelipatan yang sama. Dosis yang diperoleh adalah 0,225 g/kgBB; 0,250 g/kgBB; 0,275 g/kgBB dan 0,300 g/kgBB dan diberikan secara oral.

Peringkat dosis parasetamol ini kemudian diujikan pada 20 ekor mencit jantan yang terbagi dalam 5 kelompok, masing-masing 4 ekor mencit, dengan pembagian sebagai berikut: 4 kelompok diberi dosis parasetamol masing-masing 0,225; 0,250; 0,275; dan 0,300 g/kgBB dan 1 kelompok sebagai kontrol negatif diberi CMC 1% 0,33 g/kgBB. Cuplikan darah dan hati mencit diambil pada 24 jam setelah pemberian hepatotoksikan parasetamol dan dilakukan uji aktivitas GPT-serum. Selanjutnya, mencit-mencit tersebut dikorbankan dan diambil hatinya untuk dibuat preparat histologi. Tolok ukur dosis hepatotoksik parasetamol adalah peningkatan sepuluh kali lipat GPT-serum dari GPT-serum kontrol negatif dan adanya nekrosis pada sel hati mencit.
b. Penetapan waktu kehepatotoksikan parasetamol mencapai maksimal

c. Penetapan lama praperlakuan jus buah apel hijau

Dosis yang dipakai pada penetapan lama perlakuan jus buah apel hijau adalah setengah dari dosis maksimal jus buah apel hijau yakni 12,50 g/kgBB. Dua puluh ekor mencit jantan dibagi secara acak dalam 5 kelompok, masing-masing 4 ekor mencit, dengan pembagian sebagai berikut: kelompok I diberi praperlakuan jus buah apel hijau selama 2 hari berturut-turut, hari ke-3 diberi parasetamol dosis hepatotoksik; kelompok II diberi praperlakuan jus buah apel hijau selama 4 hari berturut-turut, hari ke-5 diberi parasetamol dosis hepatotoksik; kelompok III diberi praperlakuan jus buah apel hijau selama 6 hari berturut-turut, hari ke-7
diberi parasetamol dosis hepatotoksik; kelompok IV diberi praperlakuan jus buah apel hijau selama 8 hari berturut-turut, hari ke-9 diberi parasetamol dosis hepatotoksik; kelompok V diberi praperlakuan jus buah apel hijau selama 10 hari berturut-turut, hari ke-11 diberi parasetamol dosis hepatotoksik.

Selanjutnya, darah mencit diambil untuk ditetapkan kadar GPT-serumnya. Secara statistik, aktivitas GPT-serum mencit akan memberikan harga konstan pada waktu tertentu. Lama praperlakuan jus buah apel hijau ditentukan dengan mengacu pada harga GPT-serum konstan tersebut.

d. Penetapan dosis jus buah apel hijau

Berdasarkan konsetrasi maksimal jus buah apel hijau yang dapat dipejunkan pada mencit melalui jarum oral maka dapat ditentukan dosis maksimal jus buah apel hijau pada mencit jantan yakni 25,0 g/kgBB. Dosis ini kemudian dibuat 3 peringkat dosis dengan kelipatan yang sama dan diperoleh dosis 25,0, 2,50; dan 0,25 g/kgBB. Tiga peringkat dosis ini kemudian diujikan pada 12 ekor mencit jantan yang terbagi dalam 3 kelompok, masing-masing 4 ekor mencit, di mana masing-masing kelompok diberi praperlakuan jus buah apel hijau dosis 25,0; 2,50; dan 0,25 g/kgBB selama 6 hari berturut-turut. Hari ke-7 diberi parasetamol dosis hepatotoksik.

Selanjutnya, darah mencit diambil untuk ditetapkan kadar GPT-serumnya. Tingkatan dosis jus buah apel hijau yang akan digunakan dalam penelitian ini ditentukan sedemikian rupa agar memperoleh kisaran efek hepatoprotektif yang diinginkan yakni 20%-80%.
7. Pengelompokan dan perlakuan hewan uji

Sejumlah tiga puluh lima ekor mencit jantan dibagi secara acak ke dalam 7 kelompok, masing-masing 5 ekor mencit. Kelompok I (kontrol negatif) diberi aquades 33,33 ml/kgBB selama 6 hari berturut-turut dan hari ke-7 diberi suspensi CMC 1% 0,33 g/kgBB secara oral. Kelompok III (kontrol positif) diberi aquades 33,33 ml/kgBB selama 6 hari berturut-turut dan hari ke-7 diberi suspensi parasetamol dosis hepatotoksik hasil orientasi secara oral. Setelah 24 jam (berdasarkan hasil orientasi), mencit diambil darahnya melalui sinus orbitalis mata. Cuplikan darah diambil serumnnya untuk diukur aktivitas GPT-serurnnya secara spektrofotometri. Kemudian, mencit dikorbankan untuk diambil hatinya, dimasukkan dalam larutan formalin 10% untuk dibuat preparat histologi.

Kelompok II sebagai kontrol dosis diberi jus buah apel hijau dosis tertinggi yakni 25,0 g/kgBB selama 6 hari berturut-turut (berdasarkan hasil orientasi) dan han ke-7 diberi CMC 1% 0,33 g/kgBB. Setelah 24 jam, mencit diambil darahnya melalui sinus orbitalis mata. Cuplikan darah diambil serumnnya dan ditetapkan aktivitas GPT-serurnnya secara spektrofotometri. Kemudian, mencit dikorbankan untuk diambil hatinya, dimasukkan dalam larutan formalin 10% untuk dibuat preparat histologi.

Kelompok IV–VII berturut-turut diberi jus buah apel hijau dosis 0,39; 1,56; 6,25; dan 25,0 g/kgBB 1x sehari selama 6 hari secara oral. Hari ke-7 diberi suspensi parasetamol dosis hepatotoksik (hasil orientasi) yaitu 0,250 g/kgBB. Setelah 24 jam, mencit diambil darahnya melalui sinus orbitalis mata. Cuplikan darah diambil serumnnya dan ditetapkan aktivitas GPT-serurnnya secara spektrofotometri. Kemudian, mencit dikorbankan untuk diambil hatinya, dimasukkan ke dalam formalin 10% untuk dibuat preparat histologi.
8. Pembuatan serum

Darah mencit diambil melalui sinus orbitalis mata dan ditampung dalam tabung sentrifuga melalui dinding tabung, diamkan selama 15 menit, kemudian pusingkan dengan kecepatan 3500 rpm selama 10 menit dan diambil supernatannya (serum).

9. Penetapan aktivitas GPT-serum

Alat yang digunakan untuk menganalisis aktivitas GPT-serum adalah vitalab-mikro. Pada analisis fotometri aktivitas GPT-serum ini dilakukan sejumlah reaksi seperti yang tersaji pada tabel I.

Tabel I. Prosedur Penetapan Aktivitas GPT-serum

<table>
<thead>
<tr>
<th>Serum atau plasma</th>
<th>100 μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larutan reagen 1</td>
<td>1000 μl</td>
</tr>
<tr>
<td>Campur dan diinkubasikan 37°C selama 5 menit</td>
<td></td>
</tr>
<tr>
<td>Larutan reagen 2</td>
<td>250 μl</td>
</tr>
<tr>
<td>Campur dan baca penurunan resapan dalam 1 menit</td>
<td></td>
</tr>
</tbody>
</table>

10. Pembuatan preparat histologi sel hati

Hati mencit yang diperoleh dipotong-potong dengan mikrotom setebal 3 mm, kemudian difiksasi. Preparat dimasukkan dalam larutan etanol secara bertingkat berturut-turut etanol 50% selama 30 menit, etanol 90% selama 30 menit, etanol mutlak selama 30 menit, masing-masing 2 kali perlakuan. Preparat kemudian dimasukkan ke dalam xilol parafin, masukkan ke dalam oven selama 1 jam dalam suhu 60 °C. Pindahkan preparat ke dalam parafin cair selama satu setengah jam dalam blok preparat.

Setelah dicetak, preparat dipotong setebal 5 mikron, masukkan dalam xilol murni selama 5-10 menit. Ambil preparat dan masukkan ke dalam larutan etanol berturut-turut etanol 96%, 90%, 70%, dan 50% selama 5-10 menit. Cuci preparat dengan air, kemudian dimasukkan ke dalam larutan eosin-alkohol selama 1-2 menit. Selanjutnya, preparat dikerlingkan pada suhu kamar dan ditutup dengan kanada balsem serta obyek gelas. Proses pembuatan preparat histologi dilakukan di Laboratorium Patologi Anatomi, Fakultas Kedokteran, Universitas Gadjah Mada, Yogyakarta.

11. Pemeriksaan histologi sel hati

F. Analisis Hasil

Data aktivitas GPT-serum terlebih dahulu diuji homogenitas variansinya datanya dengan Levene Test dan distribusi datanya dengan uji Kolmogorov-Smirnov. Jika hasil uji homogenitas variansinya memberikan harga $p>0.05$ dan distribusi datanya normal secara statistik maka dilanjutkan dengan analisis varians pola searah (ANOVA one way) dengan taraf kepercayaan 95\% dan menggunakan uji LSD untuk mengetahui perbedaan masing-masing kelompok. Tetapi, apabila uji homogenitas varians data aktivitas GPT-serum memberikan harga $p<0.05$ maka analisis dengan ANOVA one way dinyatakan tidak valid walaupun distribusi datanya normal. Oleh karena itu, analisis data aktivitas GPT-serum dilakukan dengan uji Kruskal-Wallis, dilanjutkan dengan uji Mann-Whitney untuk mengetahui perbedaan masing-masing kelompok, dengan taraf kepercayaan 95\%.

Data derajat kerusakan hati juga dianalisis sesuai prosedur di atas dengan taraf kepercayaan 95\%. Perhitungan dosis efektif tengah (ED$_{50}$) hepatoprotektif jus buah apel hijau dilakukan dengan analisis probit. Perhitungan persen efek hepatoprotektif terhadap hepatotoksin parasetamol diperoleh dengan rumus:

\[
\frac{\text{GPT-serum kontrol parasetamol} - \text{GPT-serum perlakuan}}{\text{GPT-serum kontrol parasetamol}} \times 100\%
\]
BAB IV
HASIL DAN PEMBAHASAN

A. Determinasi Tanaman Apel Hijau (Pyrus malus L.)

Tujuan dilakukan determinasi tanaman adalah untuk memastikan kebenaran tanaman yang digunakan yang dalam penelitian ini. Kebenaran tanaman merupakan syarat yang harus dipenuhi dalam uji farmakologi. Determinasi dilakukan oleh Bapak IgN. Y. Kristio Budiasmoro, M.Si, di Laboratorium Farmakognosi-Fitokimia, Fakultas Farmasi Universitas Sanata Dharma, Yogyakarta. Hasil determinasi tanaman apel hijau (Pyrus malus L.) adalah sebagai berikut:

ib – 2b – 3b – 13b – 15b (3 ...Pyrus
1b ..Pyrus malus L.

B. Uji Pendahuluan

1. Penentuan dosis hepatotoksis parasetamol

Penentuan dosis hepatotoksis parasetamol bertujuan mengetahui besarnya dosis parasetamol yang dapat menyebabkan nekrosis pada sel hati mencit. Hal ini dapat diketahui dari adanya peningkatan aktivitas GPT-serum, minimal 10 kali lipat, terhadap kontrol negatif. Diketahui pula dari gambaran histopatologinya.

Data aktivitas GPT-serum dan derajat kerusakan sel hati mencit akibat pemberian parasetamol dosis 0,225 g/kgBB; 0,250 g/kgBB; 0,275 g/kgBB; dan 0,300 g/kgBB tersaji pada tabel II.

<table>
<thead>
<tr>
<th>Dosis Parasetamol (g/kgBB)</th>
<th>Selang Waktu (jam)</th>
<th>Purata Aktivitas GPT-serum ± SE (U/L)</th>
<th>Derajat Kerusakan Sel Hati</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,225</td>
<td>24</td>
<td>551,50 ± 26,98</td>
<td>Degenerasi melemak, hemoragi, dan peradangan</td>
</tr>
<tr>
<td>0,250</td>
<td>24</td>
<td>1225,75 ± 60,48</td>
<td>Nekrosis, hemoragi, degenerasi melemak, dan peradangan</td>
</tr>
<tr>
<td>0,275</td>
<td>24</td>
<td>1347,75 ± 89,93</td>
<td>Nekrosis, hemoragi, degenerasi melemak, dan peradangan</td>
</tr>
<tr>
<td>0,300*</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kontrol negatif</td>
<td></td>
<td>75,55 ± 3,56</td>
<td>Degenerasi melemak dan peradangan</td>
</tr>
</tbody>
</table>

Ket: * = semua hewan uji mengalami kematian.

Berdasarkan tabel II terlihat bahwa aktivitas GPT-serum mencit pada ketiga peringkat dosis parasetamol tersebut mengalami peningkatan secara signifikan terhadap kontrol negatif (p<0,05). Parasetamol dosis 0,225 g/kgBB memberikan
aktivitas GPT-serum sebesar 551,50 ± 26,98 U/L dengan tingkat kerusakan sel hati yang belum mencapai nekrosis. Parasetamol dosis 0,300 g/kgBB menyebabkan kematian pada hewan semua uji sehingga tidak dapat diukur aktivitas GPT-serumnya.

Parasetamol dosis 0,250 g/kgBB dan 0,275 g/kgBB memberikan aktivitas GPT-serum berturut-turut sebesar 1225,75 ± 60,48 U/L dan 1347,75 ± 89,93 U/L dengan tingkat kerusakan sel hati yang sama yaitu nekrosis. Berdasarkan uji statistik ANOVA one way yang tersaji pada lampiran 6, parasetamol dosis 0,250 g/kgBB dan 0,275 g/kgBB memberikan harga aktivitas GPT-serum yang berbeda tidak bermakna (p>0,05 yaitu 0,149). Hal ini berarti parasetamol dosis 0,250 g/kgBB dan 0,275 g/kgBB memberikan efek hepatotoksik yang hampir sama. Dengan demikian, dosis hepatotoksik parasetamol yang dipakai adalah dosis yang lebih kecil yaitu 0,250 g/kgBB, sekaligus menghindari kematian hewan uji pada penggunaan dosis parasetamol yang lebih besar.

2. Penentuan waktu kehepatotoksikan parasetamol mencapai maksimal

Penentuan waktu kehepatotoksikan parasetamol mencapai maksimal bertujuan untuk mengetahui selang waktu di mana parasetamol dosis 0,250 g/kgBB (hasil orientasi) memberikan efek hepatotoksik maksimal. Hal ini ditunjukkan oleh aktivitas GPT-serum tertinggi pada selang waktu tertentu. Parasetamol dosis 0,250 g/kgBB diujikan pada mentic jantan dengan selang waktu pengambilan cuplikan darah 24 jam, 48 jam, 72 jam, dan 96 jam secara oral.

Data aktivitas GPT-serum dan derajat kerusakan hati mencit setelah pemberian parasetamol 0,250 g/kgBB pada selang waktu 24 jam, 48 jam, 72 jam, dan 96 jam tersaji pada tabel III.
Tabel III. Aktivitas GPT-serum dan derajat kerusakan sel hati mencit setelah pemberian parasetamol 0,250 g/kgBB pada selang waktu 24, 48, 72, dan 96 jam

<table>
<thead>
<tr>
<th>Dosis Parasetamol (g/kgBB)</th>
<th>Selang Waktu (jam)</th>
<th>Purata Aktivitas GPT-serum ± SE (U/L)</th>
<th>Derajat Kerusakan Sel Hati</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,250</td>
<td>24</td>
<td>1225,75 ± 60,48</td>
<td>Nekrosis, hemoragi, degenerasi melemak, dan peradangan</td>
</tr>
<tr>
<td>0,250</td>
<td>48</td>
<td>857,50 ± 19,36</td>
<td>Degenerasi melemak, peradangan nekrosis, dan hemoragi</td>
</tr>
<tr>
<td>0,250</td>
<td>72</td>
<td>312,00 ± 12,49</td>
<td>Degenerasi melemak dan peradangan</td>
</tr>
<tr>
<td>0,250</td>
<td>96</td>
<td>148,00 ± 16,19</td>
<td>Degenerasi melemak dan peradangan</td>
</tr>
</tbody>
</table>

Berdasarkan tabel III terlihat bahwa aktivitas GPT-serum pada selang waktu 24 jam, 48 jam, 72 jam, dan 96 jam berturut-turut adalah 1225,75 ± 60,48 U/L, 857,50 ± 19,36 U/L, 312,00 ± 12,49 U/L, dan 148,00 ± 16,19 U/L. Aktivitas GPT-serum tertinggi terjadi pada pemberian parasetamol 0,250 g/kgBB dengan selang waktu 24 jam yakni 1225,75 ± 60,48 U/L. Dalam selang waktu selanjutnya yakni 48 jam, 72 jam, dan 96 jam terjadi penurunan aktivitas GPT-serum yang signifikan (p<0,05) terhadap aktivitas GPT-serum pada selang waktu 24 jam yang tersaji pada lampiran 7.

Berdasarkan uji statistik ANOVA one way yang tersaji pada lampiran 7 maka disimpulkan bahwa waktu kehepatotoksikan parasetamol 0,250 g/kgBB pada mencit mencapai maksimal pada selang waktu 24 jam. Oleh karena itu, dalam penelitian ini dosis hepatotoksik parasetamol yang digunakan pada mencit jantan adalah 0,250 g/kgBB dengan selang waktu pengambilan cuplikan darah adalah 24 jam setelah pemberian hepatotoksin parasetamol.
3. Penetapan lama praperlakuan jus buah apel hijau

Penetapan lama praperlakuan jus buah apel hijau bertujuan untuk menentukan lama perlakuan jus buah apel hijau pada mencit jantan sebelum diinduksi parasetamol 0,250 g/kgBB. Dosis jus buah apel hijau yang dipakai pada uji ini adalah setengah dari dosis maksimal jus buah apel hijau yakni 12,50 g/kgBB. Dilakukan dengan cara memberikan jus buah apel hijau dosis 12,50 g/kgBB secara oral pada 5 kelompok mencit selama 2, 4, 6, 8, dan 10 hari. Lama praperlakuan jus buah apel hijau pada mencit jantan ditentukan berdasarkan aktivitas GPT-serum yang memberikan harga konstan secara statistik pada waktu tertentu.

Data aktivitas GPT-serum mencit setelah praperlakuan jus buah apel hijau dosis 12,50 g/kgBB pada selang waktu 2, 4, 6, 8, dan 10 hari terinduksi parasetamol 0,250 g/kgBB tersaji pada tabel IV.

<table>
<thead>
<tr>
<th>Dosis JBAH (g/kgBB)</th>
<th>Selang Waktu (hari)</th>
<th>Purata Aktivitas GPT-serum ± SE (U/L)</th>
<th>Derajat Kerusakan Sel Hati</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,50</td>
<td>2</td>
<td>481,00 ± 32,50</td>
<td>Degenerasi melemak, hemorrhag, dan peradangan</td>
</tr>
<tr>
<td>12,50</td>
<td>4</td>
<td>156.25 ± 7.39</td>
<td>Degenerasi melemak, hemorrhag</td>
</tr>
<tr>
<td>12,50</td>
<td>6</td>
<td>172,25 ± 4,55</td>
<td>Degenerasi melemak, hemorrhag</td>
</tr>
<tr>
<td>12,50</td>
<td>8</td>
<td>70,00 ± 2,54</td>
<td>Degenerasi melemak</td>
</tr>
<tr>
<td>12,50</td>
<td>10</td>
<td>51,00 ± 2,27</td>
<td>Degenerasi melemak</td>
</tr>
</tbody>
</table>

Keterangan: JBAH = jus buah apel hijau
Berdasarkan tabel IV terlihat bahwa aktivitas GPT-serum pada praperlakuan jus buah apel hijau dosis 12,50 g/kgBB selama 2, 4, 6, 8, dan 10 hari berturut-turut adalah 481,00 ± 32,50 U/L, 156,25 ± 7,39 U/L, 172,25 ± 4,55 U/L, 70,00 ± 2,54 U/L, dan 51,06 ± 2,27 U/L. Berdasarkan uji statistik Mann-Whitney yang tersaji pada lampiran 8, praperlakuan jus buah apel hijau selama 4 dan 6 hari memberikan harga aktivitas GPT-serum yang berbeda tidak bermakna (p>0.05 yaitu 0,149). Hal ini berarti aktivitas GPT-serum mencit jantan sudah mencapai harga konstan pada praperlakuan jus buah apel hijau selama 4 dan 6 hari. Dengan demikian, lama perlakuan jus buah apel hijau sebelum diinduksi parasetamol yang dipakai pada penelitian ini adalah selama 6 hari.

4. Penetapan dosis jus buah apel hijau

Penentuan dosis jus buah apel hijau bertujuan menentukan tingkatan dosis jus buah apel hijau yang akan digunakan dalam penelitian ini. Dilakukan dengan mencari kisaran dosis jus buah apel hijau yang mampu memberikan efek hepatoprotektif kira-kira 0%-100% terhadap aktivitas GPT-serum kontrol positif (kontrol parasetamol 0,250 g/kgBB). Kemudian, tingkatan dosis jus buah apel hijau ditentukan sedemikian rupa agar memperoleh kisaran efek hepatoprotektif yang diinginkan yakni 20%-80%

Penentuan dosis jus buah apel hijau didasarkan pada dosis maksimal jus buah apel hijau pada mencit jantan. Dosis maksimal jus buah apel hijau pada mencit jantan ditentukan berdasarkan konsentrasi tertinggi jus buah apel hijau yang
dapat dipejankan secara oral. Dari orientasi diketahui bahwa konsetrasi tertinggi jus buah apel hijau yang dapat dipejankan secara oral pada mencit sebesar 75% sehingga dosis maksimal yang diperoleh sebesar 25,0 g/kgBB. Kemudian, ditentukan 3 tingkatan dosis jus buah apel hijau yang diujikan pada mencit jantan yakni 25,0 g/kgBB; 2,50 g/kgBB; dan 0,25 g/kgBB secara oral 1x sehari selama 6 hari berturut-turut.

Data aktivitas GPT-serum mencit setelah praperlakuan jus buah apel hijau dosis 25,0 g/kgBB; 2,50 g/kgBB; dan 0,25 g/kgBB 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB dan perhitungan % efek penghambatan terhadap GPT-serum kontrol positif tersaji pada tabel V.

Tabel V. Aktivitas GPT-serum mencit setelah praperlakuan jus buah apel hijau dosis 25,0 g/kgBB; 2,50 g/kgBB; dan 0,25 g/kgBB 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB

<table>
<thead>
<tr>
<th>Dosis JBAH (g/kgBB)</th>
<th>Purata Aktivitas GPT-serum ± SE (U/L)</th>
<th>Purata Aktivitas GPT-serum ± SE Kontrol Parasetamol 0,250 g/kgBB (U/L)</th>
<th>% efek penghambatan terhadap aktivitas GPT-serum kontrol parasetamol</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,0</td>
<td>241,25 ± 15,04</td>
<td>1225,75 ± 60,48</td>
<td>80,31%</td>
</tr>
<tr>
<td>2,50</td>
<td>727,25 ± 15,10</td>
<td></td>
<td>40,67%</td>
</tr>
<tr>
<td>0,25</td>
<td>1097,00 ± 12,17</td>
<td></td>
<td>10,50%</td>
</tr>
</tbody>
</table>

Keterangan: JBAH = jus buah apel hijau

Berdasarkan tabel V terlihat bahwa kisaran dosis 0,25 g/kgBB sampai 25,0 g/kgBB memberikan kisaran efek penghambatan aktivitas GPT-serum sebesar 10,50% sampai 80,31% terhadap kontrol positif (kontrol parasetamol 0,250 g/kgBB). Kisaran efek penghambatan ini belum memenuhi kisaran efek yang
diinginkan yaitu 20% sampai 80%, di mana jus buah apel hijau dosis 0,25 g/kgBB hanya memberikan efek penghambatan sebesar 10,50% terhadap aktivitas GPT-serum kontrol positif (kontrol parasetamol 0,250 g/kgBB). Oleh karena itu, dalam menentukan tingkatan dosis jus buah apel hijau yang akan digunakan maka perlu diperhatikan dosis terendahnya. Diperhitungkan agar dosis terendah tersebut dapat memberikan efek penghambatan yang diinginkan yaitu sebesar 20% atau lebih.

Berdasarkan data yang diperoleh maka tingkatan dosis jus buah apel hijau dipilih pada kisaran dosis 0,39 g/kgBB sampai 25,0 g/kgBB. Kisaran dosis ini diperoleh dengan menurunkan ¼ kali dosis maksimal 25,0 g/kgBB, sehingga sekaligus diperoleh empat tingkatan dosis jus buah apel hijau yang dipakai yakni 0,39 g/kgBB; 1,56 g/kgBB; 6,25 g/kgBB; dan 25,0 g/kgBB.

C. Aktivitas GPT-serum dan Gambaran Histopatologi Sel Hati Mencit

mencit disajikan dalam bentuk skoring tingkat kerusakan sel hati mencit dan persen angka proteksi yang tersaji pada tabel VII, lampiran 11, dan lampiran 16, serta dilengkapi dengan fotomikroskopi sel hati mencit yang tersaji pada gambar 6 dan gambar 7.

Tabel VI Purata ± SE aktivitas GPT-serum mencit jantan setelah praperlakuan jus buah apel hijau 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB

<table>
<thead>
<tr>
<th>Kel</th>
<th>PerlakuanA</th>
<th>Aktivitas GPT - serum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Purata ± SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(U/L)</td>
</tr>
<tr>
<td>I</td>
<td>CMC 1% 0,33 g/kgBB</td>
<td>73,60 ± 2,29</td>
</tr>
<tr>
<td>II</td>
<td>JBAH 25,0 g/kgBB</td>
<td>177,00 ± 7,83</td>
</tr>
<tr>
<td>III</td>
<td>Parasetamol 0,250 g/kgBB</td>
<td>1296,80 ± 19,54</td>
</tr>
<tr>
<td>IV</td>
<td>JBAH 0,39 g/kgBB + parasetamol</td>
<td>804,00 ± 6,78</td>
</tr>
<tr>
<td>V</td>
<td>JBAH 1,56 g/kgBB + parasetamol</td>
<td>583,60 ± 9,11</td>
</tr>
<tr>
<td>VI</td>
<td>JBAH 6,25 g/kgBB + parasetamol</td>
<td>405,00 ± 11,22</td>
</tr>
<tr>
<td>VII</td>
<td>JBAH 25,0 g/kgBB + parasetamol</td>
<td>261,40 ± 17,71</td>
</tr>
</tbody>
</table>

Keterangan: A : JBAH = jus buah apel hijau; B : (+) = terjadi kenaikan, (-) = terjadi penurunan, (b) = berbeda bermakna (p<0,05)
<table>
<thead>
<tr>
<th>Kel</th>
<th>Perlakuan<sup>A</sup></th>
<th>Tingkat kerusakan sel hati (% hewan)<sup>B</sup></th>
<th>Angka proteksi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>CMC 1% 0,33 g/kgBB</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>JBAH 25,0 g/kgBB</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Parasetamol 0,250 g/kgBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>JBAH 0,39 g/kgBB + parasetamol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>JBAH 1,56 g/kgBB + parasetamol</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>VI</td>
<td>JBAH 6,25 g/kgBB + parasetamol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI!</td>
<td>JBAH 25,0 g/kgBB + parasetamol</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Keterangan: A: JBAH = jus buah apel hijau; B: 1 = Relatif normal, 2 = degenerasi melemak (+) dan peradangan (+), 3 = degenerasi melemak (+ +) dan peradangan (+ +), 4 = degenerasi melemak (+ +) dan peradangan (+ + +), 5 = degenerasi melemak (+ + +) peradangan (+ + +) dan nekrosis (+), 6 = degenerasi melemak (+ + +) peradangan (+ + +) dan nekrosis (++)

1. Kontrol negatif CMC 1% 0,33 g/kgBB

Kontrol negatif (kelompok I) dibuat dengan tujuan: (1) memastikan bahwa peningkatan aktivitas GPT-serum (efek hepatotoksik) pada mencit jantan adalah akibat pemberian hepatotoksin parasetamol dan (2) memastikan bahwa efek hepatoprotektif pada mencit jantan terinduksi parasetamol adalah akibat praperlakuan jus buah apel hijau. Gambaran histopatologinya digunakan sebagai patokan skoring derajat kerusakan sel hati. Uji ini dilakukan dengan memberikan
aquades 33,33 ml/kgBB secara oral pada mencit 1x sehari selama 6 hari berturut-turut. Hari ke-7 diberi CMC 1% 0,33 g/kgBB, 24 jam kemudian diambil darah dan organ hatinya untuk diukur aktivitas GPT-serum dan dibuat preparat histologinya.

Aktivitas GPT-serum kontrol negatif CMC 1% 0,33 g/kgBB (kelompok I) adalah sebesar 73,60 ± 2,29 U/L yang tersaji pada tabel VI dan gambar 10. Secara makroskopi, organ hati sesaat setelah dibedah tampak berwarna merah tua, ada sedikit bintik dan bercak merah, dan jika ditekan terasa kenyal. Secara mikroskopi, gambaran histopatologi sel hati menunjukkan adanya sedikit peradangan dan degenerasi melemak yang tersaji pada lampiran 13. Hal ini mungkin disebabkan oleh kondisi patologis hewan uji yang tidak dapat dikendalikan sepenuhnya. Diketahui bahwa kondisi patologis hewan uji termasuk variabel pengacau tak terkendali. Namun kerusakan sel hati mencit tersebut masih dalam batas normal karena tidak sampai pada tingkat nekrosis, sehingga gambaran histopatologinya dapat digunakan sebagai patokan sel hati normal. Aktivitas GPT-serumnya juga dapat digunakan sebagai patokan aktivitas GPT-serum normal.

2. Kontrol jus buah apel hijau dosis 25,0 g/kgBB

Kontrol jus buah apel hijau (kelompok II) dibuat dengan tujuan melihat pengaruh jus buah apel hijau terhadap sel hati mencit tanpa induksi parasetamol. Uji ini dilakukan dengan memberikan jus buah apel hijau dosis 25,0 g/kgBB secara oral pada mencit 1x sehari selama 6 hari berturut-turut. Hari ke-7 diberi CMC 1% 0,33 g/kgBB, 24 jam kemudian diambil darah dan organ hatinya untuk diukur aktivitas GPT-serum dan dibuat preparat histologinya.
Aktivitas GPT-serum kontrol jus buah apel hijau dosis 25,0 g/kgBB (kelompok II) adalah \(i77.00 \pm 7.83 \) U/L. Bila dibandingkan dengan aktivitas GPT-serum kontrol negatif CMC 1% 0,33 g/kgBB (kelompok I) sebesar 73,60 ± 2,29 U/L maka terlihat adanya kenaikan aktivitas GPT-serum lebih kurang 2,4 kalinya atau sebesar 58,41% yang tersaji pada tabel VI. Secara statistik, kenaikan aktivitas GPT-serum kontrol jus buah apel hijau (kelompok II) terhadap kontrol negatif (kelompok I) tersebut adalah bermakna \((p<0.05)\) yang tersaji pada lampiran 10. Kenaikan aktivitas GPT-serum ini mungkin menggambarkan bahwa pemberian jus buah apel dosis tinggi selama 6 hari berturut-turut (tanpa induksi parasetamol) cenderung menimbulkan adanya sedikit kerusakan pada sel hati mentic.

Hal ini didukung oleh gambaran histopatologi sel hati mentic. Gambaran histopatologi sel hati kontrol jus buah apel hijau dosis 25,0 g/kgBB (kelompok II) menunjukkan adanya peradangan dan degenerasi melemak di mana intensitasnya sedikit lebih banyak dibandingkan dengan peradangan dan degenerasi melemak pada gambaran histopatologi kontrol negatif (kelompok I) yang tersaji pada tabel VII dan XI. Secara statistik, skor derajat kerusakan sel hati kontrol jus buah apel hijau dosis 25,0 g/kgBB (kelompok II) adalah berbeda bermakna \((p<0.05)\) terhadap kontrol negatif (kelompok I) yang tersaji pada lampiran 15. Secara makroskopi, penampakan organ hati mentic hampir sama seperti pada kontrol negatif (kelompok I) yaitu berwarna merah tua, ada sedikit bintik dan bercak merah, dan jika ditekan terasa kenyal yang tersaji pada lampiran 14.
3. Kontrol positif parasetamol 0,250 g/kgBB

Kontrol positif parasetamol 0,250 g/kgBB (kelompok III) dibuat untuk mengetahui pengaruh induksi parasetamol 0,250 g/kgBB terhadap sel hati mencit sekaligus digunakan sebagai patokan dalam menganalisa efek hepatoprotektif jus buah apel hijau. Uji ini dilakukan dengan memberikan aquades 33,33 ml/kgBB secara oral pada mencit 1x sehari selama 6 hari berturut-turut. Hari ke-7 diberi parasetamol 0,250 g/kgBB, 24 jam kemudian diambil darah dan organ hatinya untuk diukur aktivitas GPT-serum dan dibuat preparat histologinya.

Aktivitas GPT-serum kontrol positif parasetamol 0,250 g/kgBB (kelompok III) adalah sebesar 1296,80 ± 19,54 U/L. Bila dibandingkan dengan aktivitas GPT-serum kontrol negatif CMC 1% 0,33 g/kgBB (kelompok I) sebesar 73,60 ± 2,29 U/L maka terlihat adanya kenaikan aktivitas GPT-serum yang begitu besar, yaitu lebih kurang 17,6 kalinya atau sebesar 1661,95% yang tersaji pada tabel VI. Secara statistik, kenaikan aktivitas GPT-serum kontrol positif (kelompok III) terhadap kontrol negatif (kelompok I) tersebut adalah bermakna (p<0,05) yang tersaji pada lampiran 10.

Kenaikan aktivitas GPT-serum ini menggambarkan kondisi sel-sel hati secara menyeluruh. Diperkirakan, sebagian sel hati telah mengalami nekrosis, baik dengan atau tanpa akumulasi lemak. Secara makroskopi, tersaji pada lampiran 14, organ hati mencit sesaat setelah dibedah tampak coklat tua, ada banyak bintik merah dan bercak merah kehitaman seperti hangus, dan jika ditekan terasa keras. Gambaran makroskopsis ini menunjukkan parahnya kerusakan yang dialami oleh sel hati. Secara mikroskopsis, gambaran histopatologi sel hati
menunjukkan adanya peradangan, hemoragi, degenerasi melemak, dan nekrosis yang tersaji pada tabel VII dan lampiran 11. Bila dibandingkan dengan kerusakan sel hati mencit pada kontrol negatif (kelompok I), baik secara makroskopi maupun mikroskopi, maka terlihat bahwa kerusakan sel hati mencit pada kontrol positif (kelompok III) sudah sangat parah, yang ditandai dengan adanya nekrosis.

Berdasarkan uji statistik terhadap skor derajat kerusakan sel hati yang tersaji pada lampiran 12, terlihat bahwa derajat kerusakan sel hati mencit kontrol positif (kelompok III) berbeda bermakna (p<0,05) terhadap derajat kerusakan sel hati mencit kontrol negatif (kelompok I). Hasil analisis ini menegaskan bahwa parasetamol 0,250 g/kgBB memberikan efek hepatotoksik pada sel hati mencit. Fotomikroskopi sel hati mencit kelompok kontrol negatif, kontrol jus buah apel hijau, dan kontrol positif tersaji pada gambar 6.

4. Efek hepatoprotektif jus buah apel hijau dosis 0,39; 1,56; 6,25; dan 25,0 g/kgBB pada mencit jantan terinduksi parasetamol

Gambar 6a

Fotomikroskopi sel hati mencit setelah praperlakuan aquades 33,33 ml/kgBB terinduksi CMC 1% 0,33 g/kgBB (HE 40×10). Keterangan: A = vena sentralis; B = degenerasi melemak; C = sel radang

Gambar 6b

Fotomikroskopi sel hati mencit setelah praperlakuan jus buah apel hijau 25,00 g/kgBB terinduksi CMC 1% 0,33 g/kgBB (HE 40×10). Keterangan: A = vena sentralis; B = degenerasi melemak; C = sel radang

Gambar 6c

Fotomikroskopi sel hati mencit setelah praperlakuan aquades 33,33 ml/kgBB terinduksi parasetamol 0,250 g/kgBB (HE 40×10). Keterangan: A = sel radang; B = nekrosis

Gambar 6. Fotomikroskopi sel hati mencit jantan
Artinya, semakin besar dosis perlakuan jus buah apel hijau yang diberikan sebelum induksi parasetamol 0,250 g/kgBB maka perlindungan yang diberikan pada sel hati semakin besar yang ditunjukkan dengan penurunan aktivitas GPT-serum mencit. Hal ini didukung juga oleh gambaran histopatologi sel hati mencit. Terlihat bahwa persen angka proteksi sel hati mencit kelompok praperlakuan jus buah apel hijau akibat induksi parasetamol 0,250 g/kgBB semakin meningkat seiring dengan kenaikan dosis praperlakuan jus buah apel hijau, seperti yang tersaji pada tabel VII. Hasil uji secara lengkap dapat dilihat pada tabel VI, tabel VII, dan tabel VIII.

Kelompok IV adalah kelompok praperlakuan jus buah apel hijau dosis 0,39 g/kgBB. Aktivitas GPT-serum kelompok ini adalah sebesar 804,00 ± 6,78 U/L. Bila dibandingkan dengan kontrol positif (kelompok III) maka aktivitas GPT-serum kelompok IV mengalami penurunan lebih kurang 1,6 kali atau sebesar 38,0% seperti yang tersaji pada tabel VI. Secara statistik, yang tersaji pada lampiran 10, penurunan tersebut menunjukkan perbedaan yang bermakna (p<0,05). Dapat diartikan bahwa jus buah apel hijau dosis 0,39 g/kgBB mampu menghambat peningkatan aktivitas GPT-serum akibat induksi parasetamol 0,250 g/kgBB sebesar 38,0%. Hal ini menunjukkan bahwa praperlakuan jus buah apel hijau dosis 0,39 g/kgBB mampu memberikan perlindungan terhadap hati mencit akibat induksi parasetamol 0,250 g/kgBB. Kemampuan perlindungan jus buah apel hijau dosis 0,39 g/kgBB tersebut didukung oleh gambaran histopatologi sel hati mencit kelompok IV yang menunjukkan adanya penurunan jumlah nekrosis terhadap kontrol positif (kelompok III), meskipun masih terdapat hemoragi, peradangan, dan degenerasi melemak, seperti yang tersaji pada lampiran 11 dan 13. Hal ini didukung oleh perhitungan persen angka proteksi sel hati, tersaji pada
lampiran 16, yang menunjukkan bahwa histologi sel hati kelompok IV mengalami pencegahan sebesar 16,67% terhadap kontrol positif (kelompok III). Analisis statistik skor derajat kerusakan sel hati mencit kelompok IV terhadap kontrol positif (kelompok III) menunjukkan perbedaan yang bermakna (p<0,05), seperti yang tersaji pada lampiran 15. Artinya, keadaan sel-sel hati mencit kelompok IV lebih baik 16,67% dibanding kontrol positif (kelompok III). Secara makroskopi, tersaji pada lampiran 14, penampakan organ hati mencit kelompok IV masih hampir sama dengan kontrol positif (kelompok III) yaitu masih berwarna coklat tua, ada banyak bintik merah dan bercak merah kehitaman seperti hangus, dan jika ditekan terasa keras.

Kelompok V adalah kelompok praperlakuan jus buah apel hijau dosis 1,56 g/kgBB. Aktivitas GPT-serum kelompok ini adalah sebesar 583,60 ± 9,11 U/L. Bila dibandingkan dengan kontrol positif (kelompok III) maka aktivitas GPT-serum kelompok V mengalami penurunan lebih kurang 2,2 kalinya atau sebesar 54,99%, seperti yang tersaji pada tabel VI. Secara statistik, penurunan tersebut menunjukkan perbedaan yang bermakna (p<0,05), tersaji pada lampiran 10. Dapat diartikan bahwa jus buah apel hijau dosis 1,56 g/kgBB mampu menghambat peningkatan aktivitas GPT-serum akibat induksi parasetamol 0,250 g/kgBB sebesar 54,99%. Hal ini menunjukkan bahwa praperlakuan jus buah apel hijau dosis 1,56 g/kgBB mampu memberikan perlindungan terhadap hati mencit akibat induksi parasetamol 0,250 g/kgBB. Kemampuan perlindungan jus buah apel hijau dosis 1,56 g/kgBB tersebut didukung oleh gambaran histopatologi sel hati mencit kelompok V yang tidak menunjukkan adanya nekrosis lagi, seperti pada kontrol positif (kelompok III) dan kelompok IV. Kerusakan sel hati yang terjadi berupa
hemoragi, peradangan, dan degenerasi melemah, seperti terlihat pada lampiran 11 dan 13. Hal ini didukung oleh perhitungan persen angka proteksi sel hati yang menunjukkan bahwa histologi sel hati kelompok V mengalami pencegahan sebesar 36,67% terhadap kontrol positif (kelompok III). Analisis statistik skor derajat kerusakan sel hati mencit kelompok V terhadap kontrol positif (kelompok III) menunjukkan perbedaan yang bermakna (p<0,05). Artinya, keadaan sel-sel hati mencit kelompok V lebih baik 36,67% dibanding kontrol positif (kelompok III). Secara makroskopi, penampakan organ hati mencit kelompok V berbeda dengan kontrol positif (kelompok III) dan kelompok IV yaitu berwarna merah kecoklatan, ada banyak bintik merah dan bercak merah, dan jika ditekan terasa keras.

Terlihat bahwa kenampuan perlindungan oleh jus buah apel hijau dosis 1,56 g/kgBB (kelompok V) sebesar 54,99% lebih baik dari pada jus buah apel hijau dosis 0,39 g/kgBB (kelompok IV) sebesar 38,0%. Analisis statistik aktivitas GPT-serum antara kedua kelompok tersebut menunjukkan perbedaan bermakna (p<0,05). Gambaran histopatologinya menunjukkan bahwa keadaan sel hati kelompok V lebih baik dari pada kelompok IV. Hal ini ditunjukkan oleh analisis skor derajat kerusakan hati antara kedua kelompok tersebut yang memberikan perbedaan bermakna (p<0,05), tersaji pada lampiran 15.

Kelompok VI adalah kelompok praperlakuan jus buah apel hijau dosis 6,25 g/kgBB. Aktivitas GPT-serum kelompok ini adalah sebesar 405,00 ± 11,22 U/L. Bila dibandingkan dengan kontrol positif (kelompok III) maka aktivitas GPT-serum kelompok VI mengalami penurunan lebih kurang 3,2 kali atau sebesar
68,76%, seperti yang tersaji pada tabel VI. Secara statistik, tersaji pada lampiran 10, penurunan tersebut menunjukkan perbedaan yang bermakna (p<0,05). Dapat diartikan bahwa jus buah apel hijau dosis 6,25 g/kgBB juga mampu menghambat peningkatan aktivitas GPT-serum akibat induksi parasetamol 0,250 g/kgBB sebesar 68,76%. Hal ini menunjukkan bahwa praperlakuan jus buah apel hijau dosis 6,25 g/kgBB mampu memberikan perlindungan terhadap hati mencit akibat induksi parasetamol 0,250 g/kgBB. Kemampuan perlindungan jus buah apel hijau dosis 6,25 g/kgBB tersebut didukung oleh gambaran histopatologi sel hati mencit kelompok VI yang tidak menunjukkan adanya nekrosis lagi, seperti pada kontrol positif (kelompok III) dan kelompok IV. Hemoragi, seperti pada kelompok V, juga tidak ada lagi. Kerusakan sel hati yang terjadi berupa peradangan dan degenerasi melemak dengan jumlah yang lebih sedikit dibanding kelompok V. Hal ini didukung oleh perhitungan persen angka proteksi sel hati yang menunjukkan bahwa histologi sel hati kelompok VI mengalami pencegahan sebesar 50,0% terhadap kontrol positif (kelompok III). Analisis statistik skor derajat kerusakan sel hati mencit kelompok VI terhadap kontrol positif (kelompok III) menunjukkan perbedaan yang bermakna (p<0,05), tersaji pada lampiran 15. Attinya, keadaan sel-sel hati mencit kelompok VI lebih baik 50,0% dibanding kontrol positif (kelompok III). Secara makroskopi, penampilan organ hati mencit kelompok VI berbeda dengan kontrol positif (kelompok III) dan kelompok IV. Penampilan organ hatinya hampir sama dengan kelompok V yaitu berwarna merah tua, ada banyak bintik merah dan bercak merah, dan jika ditekan terasa keras.
Terlihat bahwa kemampuan perlindungan oleh jus buah apel hijau dosis 6,25 g/kgBB (kelompok VI) sebesar 68,76% lebih baik dari pada jus buah apel hijau dosis 0,39 g/kgBB (kelompok IV) dan 1,56 g/kgBB (kelompok V) masing-masing sebesar 38,0% dan 54,99%. Analisis statistik aktivitas GPT-serum masing-masing kelompok tersebut juga menunjukkan perbedaan bermakna (p<0,05). Gambaran histopatologinya menunjukkan bahwa keadaan sel hati kelompok VI lebih baik dari pada kelompok IV dan kelompok V. Hal ini ditunjukkan oleh analisis skor derajat kerusakan hati masing-masing kelompok tersebut yang memberikan perbedaan bermakna (p<0,05).

Kelompok VII adalah kelompok praperlakuan jus buah apel hijau dosis 25,0 g/kgBB. Aktivitas GPT-serum kelompok ini adalah sebesar 261,40 ± 17,71 U/L. Bila dibandingkan dengan kontrol positif (kelompok III) maka aktivitas GPT-serum kelompok VII mengalami penurunan lebih kurang 4,5 kalinya atau sebesar 83,31%, seperti yang tersaji pada tabel VI. Secara statistik, penurunan tersebut menunjukkan perbedaan yang bermakna (p<0,05). Dapat diartikan bahwa jus buah apel hijau dosis 25,0 g/kgBB paling mampu menghambat peningkatan aktivitas GPT-serum akibat induksi parasetamol 0,250 g/kgBB sebesar 83,31%. Hal ini menunjukkan bahwa praperlakuan jus buah apel hijau dosis 25,0 g/kgBB mampu memberikan perlindungan terhadap hati mencit akibat induksi parasetamol 0,250 g/kgBB. Kemampuan perlindungan jus buah apel hijau dosis 25,0 g/kgBB tersebut didukung oleh gambaran histopatologi sel hati mencit kelompok VII yang tidak menunjukkan adanya nekrosis lagi, seperti pada kontrol positif (kelompok III) dan kelompok IV. Hemoragi, seperti pada kelompok V, juga tidak ada lagi. Kerusakan sel hati yang terjadi berupa peradangan dan
degenerasi melemak dengan jumlah yang lebih sedikit dibanding kelompok V dan kelompok VI. Hal ini didukung oleh perhitungan persen angka proteksi sel hati yang menunjukkan bahwa histologi sel hati kelompok VI mengalami pencegahan sebesar 63,33% terhadap kontrol positif (kelompok III), yang tersaji pada tabel VII. Analisis statistik skor derajat kerusakan sel hati mencit kelompok VII terhadap kontrol positif (kelompok III) menunjukkan perbedaan yang bermakna (p<0,05). Artinya, keadaan sel-sel hati mencit kelompok VII lebih baik 63,33% dibanding kontrol positif (kelompok III). Secara makroskopi, penampakan organ hati mencit kelompok VII agak berbeda dengan kontrol positif (kelompok III) dan kelompok IV. Penampakan organ hatinya juga agak berbeda dengan kelompok V yaitu berwarna merah tua, ada sedikit bintik merah dan bercah merah, dan jika ditekan terasa keras.

Terlihat bahwa kemampuan perlindungan oleh jus buah apel hijau dosis 25,0 g/kgBB (kelompok VI) sebesar 83,31% lebih baik dari pada jus buah apel hijau dosis 0,39 g/kgBB (kelompok IV); 1,56 g/kgBB (kelompok V); dan 6,25 g/kgBB (kelompok VI), masing-masing sebesar 38,0%; 54,95%; dan 68,76%. Analisis statistik aktivitas GPT-serum masing-masing kelompok tersebut menunjukkan perbedaan bermakna (p<0,05). Gambaran histopatologinya menunjukkan bahwa keadaan sel hati kelompok VII lebih baik dari pada kelompok IV, kelompok V, kelompok VI. Hal ini ditunjukkan oleh analisis skor derajat kerusakan hati masing-masing kelompok tersebut yang memberikan perbedaan bermakna (p<0,05). Fotomikroskopi sel hati mencit setelah praperlakuan jus buah apel hijau dosis 0,39; 1,56; 6,25; dan 25,0 g/kgBB terinduksi parasetamol 0,250 g/kgBB tersaji pada gambar 7.
Gambar 7a
Fotomikroskopi sel hati mencit setelah praperlakuan jus buah apel hijau 1,56 g/kgBB terinduksi parasetamol 0,250 g/kgBB (HE 40×10). Keterangan: A = vena sentralis; B = degenerasi melemak; C = sel radang; D = hemoragi

Gambar 7b
Fotomikroskopi sel hati mencit setelah praperlakuan jus buah apel hijau 6,25 g/kgBB terinduksi parasetamol 0,250 g/kgBB (HE 40×10). Keterangan: A = vena sentralis; B = degenerasi melemak; C = sel radang

Gambar 7c
Fotomikroskopi sel hati mencit setelah praperlakuan jus buah apel hijau 25,00 g/kgBB terinduksi parasetamol 0,250 g/kgB (HE 40×10). Keterangan: A = degenerasi melemak; B = sel radang

Gambar 7d
Fotomikroskopi sel hati mencit setelah praperlakuan jus buah apel hijau 0,39 g/kgBB terinduksi parasetamol 0,250 g/kgBB (HE 40×10). Keterangan: A = vena sentralis; B = degenerasi melemak; C = sel radang; D = nekrosis

Gambar 7. Fotomikroskopi sel hati mencit jantan
Uji efek hepatoprotektif terhadap keempat dosis jus buah apel hijau di atas menunjukkan bahwa semakin tinggi dosis praperlakuan jus buah apel hijau, berturut-turut 0,39; 1,56; 6,25; dan 25,0 g/kgBB memberikan keefektifan penghambatan terhadap kehepatotoksikan parasetamol yang semakin besar. Hal ini ditunjukkan oleh adanya penurunan aktivitas GPT-serum, berturut-turut sebesar 38,0%; 54,99%; 68,76%; dan 83,31%. Hasil ini juga didukung oleh gambaran histopatologi sel hati mencit yang menunjukkan keadaan sel hati mencit yang lebih baik dibanding kontrol positif yang ditunjukkan oleh perhitungan persen angka proteksi sel hati berturut-turut sebesar 16,67%; 36,67%; 50,0%; dan 63,33%.

Adanya penghambatan aktivitas GPT-serum menunjukkan bahwa jus buah apel hijau mempunyai efek hepatoprotektif pada mencit jantan terinduksi parasetamol. Kemungkinan adanya efek hepatoprotektif tersebut dapat ditinjau dari mekanisme kerusakan hati mencit yang ditimbulkan oleh hepatotoksin parasetamol dan aktivitas antioksidan flavonoid yang terkandung pada buah apel hijau. Diketahui bahwa kerusakan hati selain diperantarai oleh NAPBKI, kehepatotoksikan parasetamol juga terjadi melalui jalur tekanan oksidatif. Melalui jalur tekanan oksidatif ini, kehepatotoksikan parasetamol diyakini diperantarai oleh adanya oksigen reaktif atau radikal bebas, seperti anion superoksida, hidrogen peroksida, dan radikal hidroksil. Sedangkan senyawa flavonoid yang terkandung dalam apel hijau diketahui mempunyai aktivitas antioksidan. Dengan demikian, dapat diduga bahwa efek hepatoprotektif jus buah apel hijau pada
mencit jantan terinduksi parasetamol terkait dengan kemampuan senyawa flavonoid menetralkan oksigen reaktif atau radikal bebas pemicu kesiotoksikan sel hati, seperti anion superoksida, hidrogen peroksida, dan radikal hidroksil. Dilaporkan bahwa secara umum senyawa turunan flavonoid mampu memberikan efek antioksidan antara lain karena adanya gugus fenolik dalam struktur molekulnya. Ketika senyawa-senyawa ini bereaksi dengan radikal bebas maka terbentuk radikal baru yang distabilisasi oleh efek resonansi inti aromatik.

Berdasarkan keterangan di atas maka dapat dibuat kemungkinan mekanisme reaksi penangkapan radikal bebas oleh flavonoid, seperti yang terlihat pada gambar 8.
Gambar 8. Kemungkinan mekanisme reaksi penangkapan radikal bebas oleh flavonoid.
Keterangan: X = senyawa radikal bebas
D. Dosis Efektif Tengah (ED₅₀)

Penentuan dosis efektif tengah jus buah apel hijau dilakukan untuk memperkirakan dosis yang dapat memberi perlindungan terhadap sel-sel hati mencit sebesar 50%. Dilakukan berdasarkan data dosis jus buah apel hijau yang mampu menghambat kehepatotoksikan parasetamol pada kisaran 0% - 100%.

Tabel VIII. Persen efek hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol dan nilai ED₅₀

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Dosis (mg/kgBB)</th>
<th>efek hepatoprotektif (%)</th>
<th>ED₅₀ (g/kgBB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBAH (0,39 g/KgBB) + para</td>
<td>390</td>
<td>38,0</td>
<td></td>
</tr>
<tr>
<td>JBAH (1,56 g/KgBB) + para</td>
<td>1560</td>
<td>54,99</td>
<td>1,104</td>
</tr>
<tr>
<td>JBAH (6,25 g/KgBB) + para</td>
<td>6250</td>
<td>68,76</td>
<td></td>
</tr>
<tr>
<td>JBAH (25,0 g/KgBB) + para</td>
<td>25000</td>
<td>83,31</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: JBAH = jus buah apel hijau; para = parasetamol

Dosis yang memberikan efek hepatoprotektif 50% pada sel-sel hati mencit terinduksi parasetamol adalah sebesar 1,104 g/kgBB. ED₅₀ yang diperoleh tersebut menunjukkan bahwa penurunan aktivitas GPT-serum mencit terinduksi parasetamol 0,250 g/kgBB akan mencapai 50% bila diberi praperlakuan jus buah apel hijau dosis 1,104 g/kgBB. Bila dikonversikan ke manusia, dapat dihitung
seperti berikut: faktor konversi mencit (20 g) ke manusia (70 kg) adalah 387,9. Dengan demikian, ED₉₀ jus buah apel hijau 1,104 g/kgBB bila dikonversikan ke manusia dengan berat badan 70 kg adalah sebesar 8,564 g yang diperoleh dari 20/1000 x 1,104 x 387,9. Untuk manusia Indonesia (50 kg) maka 50/70 x 8,564 menjadi 6,11 g.

E. Rangkaman Pembahasan

Hasil penelitian ini menunjukkan bahwa praperlakuan jus buah apel hijau dosis 0,39; 1,56; 6,25; dan 25,0 g/kgBB (kelompok IV-VII) mampu menurunkan aktivitas GPT-serum mencit akibat induksi hepatotoksin parasetamol berturut-turut sebesar 38,0%; 54,99%; 68,76%; dan 83,31%. Hal ini didukung oleh gambaran histopatologi yang menunjukkan bahwa keadaan sel hati mencit kelompok IV-VII tampak lebih baik dibanding kontrol positif parasetamol 0,250 g/kgBB dengan persen angka proteksi berturut-turut sebesar 16,67%; 36,67%; 50,0%; dan 63,33%. Hasil ini menjawab permasalahan pertama dalam penelitian ini yakni bahwa jus buah apel hijau (*Pyrus malus* L.) mempunyai efek hepatoprotektif pada mencit jantan terinduksi parasetamol. Permasalahan kedua dijawab dengan perhitungan ED₉₀ hepatoprotektifnya dan diperoleh nilai ED₉₀nya sebesar 1,104 g/kgBB.

Mekanisme efek hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol belum diketahui secara pasti. Namun, dapat diduga bahwa efek hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol mungkin terkait dengan kemampuan senyawa flavonoid menetralkan oksigen reaktif atau radikal bebas pemicu kesitotoksikan sel hati, seperti anion superoksida, hidrogen peroksida, dan radikal hidroksil.
BAB V
KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan data yang telah diperoleh dan analisis yang telah dilakukan maka dapat disimpulkan bahwa:

1. jus buah apel hijau dosis 0,39; 1,56; 6,25; dan 25,0 g/kgBB mempunyai efek hepatoprotektif pada mencit jantan terinduksi parasetamol.

2. dosis efektif tengah (ED$_{50}$) hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol adalah sebesar 1,104 g/kgBB.

B. Saran

Perlu dilakukan penelitian lebih lanjut tentang:

1. uji efek hepatoprotektif jus buah apel hijau pada mencit terinduksi hepatotoksin lain seperti karbon tetraklorida (CCL$_4$).

2. isolasi senyawa turunan flavonoid yang terdapat dalam jus buah apel hijau.

3. mekanisme hepatoprotektif jus buah apel hijau.
DAFTAR PUSTAKA

Middleton, Jr., Kandaswami, C., and Theoharies, C. T., 2000, The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer, Vol. 52, Issue 4, 673-751, Chebeague Island Institute of Natural Product Research, Chebeague Island, Maryland (E.M., C.K.); and Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts (T. C. T.).

Untung, O., 1994, Jenis dan Budidaya Apel, Cetakan I, PT. Penebar Swadaya, Jakarta.

LAMPIRAN
Lampiran 1

Foto tanaman apel hijau (*Pyrus malus* L.) diperoleh dari perkebunan apel
Batu, Malang, Jawa Timur
Lampiran 2

Foto buah apel hijau (*Pyrus malus* L.)
Lampiran 3

Surat pengesahan identifikasi spesimen

FAKULTAS FARMASI
UNIVERSITAS SANATA DHARMA
(KAMPUS III) Paingan Maguwoharjo, Depok, Siemen, Yogyakarta 55281
Alamat Surat : Mrican, Tromol Pos 29, Yogyakarta 55002
Telp. (0274) 883037, 883968 Fax. (0274) 886529 - Telegram : SADHAR YOGYA
E-mail : Farmasi@usd.ac.id

SURAT PENGESAHAN DETERMINASI

Nomor : 292 /LKTO/ftur-USD/ 06 / 04

Laboratorium Kebun Obat, Fakultas Farmasi Universitas Sanata Dharma,
menyatakan bahwa telah dilakukan determinasi terhadap satu contoh tanaman,
dengan nama :

Pyrus malus L.

(Apel Hijau)

Determinasi telah dilakukan secara benar sesuai dengan :

Barker, C.A., Bakhuizen van den Brink, R.C., 1963,
Flora of Java, Vol I, 4-8, 25,27-29, 507-512, N.V.P.,
Noordhoff, Groningen, The Netherlands.

hingga kategori : jenis (spesies)

Tanaman tersebut dipakai dalam penelitian :

Efek Hepatoprotektik Jus Buah Apel Hijau *(Pyrus malus L.)*
Terhadap Mencit Jenteng Terinduksi Paracetamol

oleh : Antonius A., Landoedin

dari : Fakultas Farmasi Universitas Sanata Dharma

Herbarium disimpan oleh Laboratorium Biologi Unum, Fakultas Farmasi Universitas
Sanata Dharma, dengan nomor katalog :

Demi kian surat pengesahan determinasi ini dibuat untuk dapat digunakan
sebagaimana mestinya.

Mengesahkan,
Kepala Laboratorium Kebun Obat

(Ema Tri Wulandari, M.Si., Apt.)

Yogyakarta, 4 Juni 2004

Determinator,

(..........................)
Lampiran 4

Foto jus buah apel hijau (*Pyrus malus* L.)
Lampiran 5

Tabel IX. Aktivitas GPT–serum mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol 0,250 g/kgBB

<table>
<thead>
<tr>
<th>M</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>202</td>
<td>1310</td>
<td>812</td>
<td>607</td>
<td>423</td>
<td>224</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>157</td>
<td>1276</td>
<td>816</td>
<td>551</td>
<td>384</td>
<td>214</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>182</td>
<td>1250</td>
<td>798</td>
<td>587</td>
<td>434</td>
<td>282</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>180</td>
<td>1365</td>
<td>814</td>
<td>590</td>
<td>375</td>
<td>302</td>
</tr>
<tr>
<td>5</td>
<td>76</td>
<td>164</td>
<td>1283</td>
<td>780</td>
<td>583</td>
<td>409</td>
<td>285</td>
</tr>
<tr>
<td>X</td>
<td>73,60</td>
<td>177,00</td>
<td>1296,80</td>
<td>804,0</td>
<td>583,60</td>
<td>405,0</td>
<td>261,40</td>
</tr>
<tr>
<td>SE</td>
<td>2,29</td>
<td>7,83</td>
<td>19,54</td>
<td>6,78</td>
<td>9,11</td>
<td>11,22</td>
<td>17,71</td>
</tr>
</tbody>
</table>

Keterangan:

M = mencit
I = kontrol negatif CMC 1% 0,33 g/kgBB
II = kontrol jus buah apel hijau 25,0 g/kgBB
III = kontrol positif parasetamol 0,259 g/kgBB
IV = jus buah apel hijau 0,39 g/kgBB + parasetamol 0,250 g/kgBB
V = jus buah apel hijau 1,56 g/kgBB + parasetamol 0,250 g/kgBB
VI = jus buah apel hijau 6,25 g/kgBB + parasetamol 0,250 g/kgBB
VII = jus buah apel hijau 25,0 g/kgBB + parasetamol 0,250 g/kgBB
Lampiran 6

Hasil analisis statistik penetapan dosis hepatotoksik parasetamol

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>4</td>
<td>75.7500</td>
<td>7.1356</td>
<td>3.5678</td>
</tr>
<tr>
<td>parasetamol 0.225 g/KgBB</td>
<td>4</td>
<td>551.5000</td>
<td>53.9722</td>
<td>26.9861</td>
</tr>
<tr>
<td>parasetamol 0.250 g/KgBB</td>
<td>4</td>
<td>1225.7500</td>
<td>120.9721</td>
<td>60.4861</td>
</tr>
<tr>
<td>parasetamol 0.275 g/KgBB</td>
<td>4</td>
<td>1347.7500</td>
<td>179.8655</td>
<td>89.9327</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>800.1875</td>
<td>542.8433</td>
<td>135.7108</td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td></td>
<td>64.3957</td>
<td>87.1043</td>
<td>68.00</td>
<td>84.00</td>
</tr>
<tr>
<td>parasetamol 0.225 g/KgBB</td>
<td></td>
<td>465.6182</td>
<td>637.3818</td>
<td>476.00</td>
<td>596.00</td>
</tr>
<tr>
<td>parasetamol 0.250 g/KgBB</td>
<td></td>
<td>1033.2564</td>
<td>1418.2436</td>
<td>1100.00</td>
<td>1391.00</td>
</tr>
<tr>
<td>parasetamol 0.275 g/KgBB</td>
<td></td>
<td>1061.5439</td>
<td>1633.9561</td>
<td>1085.00</td>
<td>1489.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>510.9267</td>
<td>1089.4483</td>
<td>68.00</td>
<td>1489.00</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.011</td>
<td>3</td>
<td>12</td>
<td>0.072</td>
</tr>
</tbody>
</table>
ANOVA

SGPT

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>4270333.2</td>
<td>3</td>
<td>1423444.396</td>
<td>113.990</td>
</tr>
<tr>
<td>Within Groups</td>
<td>149849.25</td>
<td>12</td>
<td>12487.438</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4420182.4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPar Tests

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th>N</th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td>Absolute</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td></td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data.

Oneway

ANOVA

SGPT

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>4270333.2</td>
<td>3</td>
<td>1423444.396</td>
<td>113.990</td>
</tr>
<tr>
<td>Within Groups</td>
<td>149849.25</td>
<td>12</td>
<td>12487.438</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4420182.4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post Hoc Tests
Multiple Comparisons

Dependent Variable: SGPT

LSD

<table>
<thead>
<tr>
<th>(I) KELOMPOK</th>
<th>(J) KELOMPOK</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>parasetamol 0.225 g/KgBB</td>
<td>-475.7500*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.250 g/KgBB</td>
<td>-1150.0000*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.275 g/KgBB</td>
<td>-1272.0000*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td>parasetamol 0.225 g/KgBB</td>
<td>kontrol CMC 1%</td>
<td>475.7500*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.250 g/KgBB</td>
<td>-674.2500*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.275 g/KgBB</td>
<td>-796.2500*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td>parasetamol 0.250 g/KgBB</td>
<td>kontrol CMC 1%</td>
<td>1150.0000*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.225 g/KgBB</td>
<td>674.2500*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.275 g/KgBB</td>
<td>-122.0000</td>
<td>79.0172</td>
<td>.149</td>
</tr>
<tr>
<td>parasetamol 0.275 g/KgBB</td>
<td>kontrol CMC 1%</td>
<td>1272.0000*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.225 g/KgBB</td>
<td>796.2500*</td>
<td>79.0172</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.250 g/KgBB</td>
<td>122.0000</td>
<td>79.0172</td>
<td>.149</td>
</tr>
</tbody>
</table>
Multiple Comparisons

Dependent Variable: SGPT

LSD

<table>
<thead>
<tr>
<th>(i) KELOMPOK</th>
<th>(j) KELOMPOK</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>kontrol CMC 1%</td>
<td>parasetamol 0.225 g/KgBB</td>
<td>-647.9137</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.250 g/KgBB</td>
<td>-1322.1637</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.275 g/KgBB</td>
<td>-1444.1637</td>
</tr>
<tr>
<td>parasetamol 0.225 g/KgBB</td>
<td>kontrol CMC 1%</td>
<td>303.5863</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.250 g/KgBB</td>
<td>-846.4137</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.275 g/KgBB</td>
<td>-968.4137</td>
</tr>
<tr>
<td>parasetamol 0.250 g/KgBB</td>
<td>kontrol CMC 1%</td>
<td>977.8363</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.225 g/KgBB</td>
<td>502.0863</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.275 g/KgBB</td>
<td>-294.1637</td>
</tr>
<tr>
<td>parasetamol 0.275 g/KgBB</td>
<td>kontrol CMC 1%</td>
<td>1099.8363</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.225 g/KgBB</td>
<td>624.0863</td>
</tr>
<tr>
<td></td>
<td>parasetamol 0.250 g/KgBB</td>
<td>-50.1637</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.
Lampiran 7

Hasil analisis statistik penetapan waktu kehepatotoksikan parasetamol mencapai maksimal

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol</td>
<td>4</td>
<td>75.750</td>
<td>7.1356</td>
<td>3.5678</td>
</tr>
<tr>
<td>CMC 1%</td>
<td>4</td>
<td>1225.7500</td>
<td>120.9721</td>
<td>60.4861</td>
</tr>
<tr>
<td>24 jam</td>
<td>4</td>
<td>857.500</td>
<td>38.7341</td>
<td>19.3671</td>
</tr>
<tr>
<td>48 jam</td>
<td>4</td>
<td>312.0000</td>
<td>24.9933</td>
<td>12.4967</td>
</tr>
<tr>
<td>72 jam</td>
<td>4</td>
<td>148.0000</td>
<td>32.3831</td>
<td>16.1916</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>523.8000</td>
<td>459.8209</td>
<td>102.8191</td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol</td>
<td>64.3957</td>
<td>87.1043</td>
<td>65.00</td>
<td>84.00</td>
</tr>
<tr>
<td>CMC 1%</td>
<td>1033.2564</td>
<td>1418.2438</td>
<td>1100.00</td>
<td>1391.00</td>
</tr>
<tr>
<td>24 jam</td>
<td>795.8653</td>
<td>919.1347</td>
<td>819.00</td>
<td>905.00</td>
</tr>
<tr>
<td>48 jam</td>
<td>272.2300</td>
<td>351.7700</td>
<td>291.00</td>
<td>348.00</td>
</tr>
<tr>
<td>72 jam</td>
<td>96.4712</td>
<td>199.5288</td>
<td>103.00</td>
<td>180.00</td>
</tr>
<tr>
<td>Total</td>
<td>308.5972</td>
<td>739.0028</td>
<td>68.00</td>
<td>1391.00</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.798</td>
<td>4</td>
<td>15</td>
<td>064</td>
</tr>
</tbody>
</table>
ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3963692.7</td>
<td>4</td>
<td>990923.175</td>
<td>277.432</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>53576.500</td>
<td>15</td>
<td>3571.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4017269.2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPar Tests

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>Normal Parametersa,b</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Most Extreme</td>
<td>Absolute</td>
</tr>
<tr>
<td>Differences</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td></td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data.

Oneway

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3963692.7</td>
<td>4</td>
<td>990923.175</td>
<td>277.432</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>53576.500</td>
<td>15</td>
<td>3571.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4017269.2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post Hoc Tests
Multiple Comparisons

Dependent Variable: SGPT

<table>
<thead>
<tr>
<th>(I) KELOMPOK</th>
<th>(J) KELOMPOK</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>24 jam</td>
<td>-1150.0000*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>-781.7500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>-236.2500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>-72.2500</td>
<td>42.2597</td>
<td>.108</td>
</tr>
<tr>
<td>24 jam</td>
<td>kontrol CMC 1%</td>
<td>1150.0000*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>46 jam</td>
<td>368.2500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>913.7500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>1077.7500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td>48 jam</td>
<td>kontrol CMC 1%</td>
<td>781.7500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>24 jam</td>
<td>-368.2500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>545.5000*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>709.5000*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td>72 jam</td>
<td>kontrol CMC 1%</td>
<td>236.2500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>24 jam</td>
<td>-913.7500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>-545.5000*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>164.0000*</td>
<td>42.2597</td>
<td>.001</td>
</tr>
<tr>
<td>96 jam</td>
<td>kontrol CMC 1%</td>
<td>72.2500</td>
<td>42.2597</td>
<td>.108</td>
</tr>
<tr>
<td></td>
<td>24 jam</td>
<td>-1077.7500*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>-709.5000*</td>
<td>42.2597</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>-164.0000*</td>
<td>42.2597</td>
<td>.001</td>
</tr>
</tbody>
</table>
Multiple Comparisons

Dependent Variable: SGPT
LSD

<table>
<thead>
<tr>
<th>(I) KELOMPOK</th>
<th>(J) KELOMPOK</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>kontrol CMC 1%</td>
<td>24 jam</td>
<td>-1240.0744</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>-871.8244</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>-326.3244</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>-162.3244</td>
</tr>
<tr>
<td>24 jam</td>
<td>kontrol CMC 1%</td>
<td>1059.9256</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>278.1756</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>823.6756</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>987.6756</td>
</tr>
<tr>
<td>48 jam</td>
<td>kontrol CMC 1%</td>
<td>691.6756</td>
</tr>
<tr>
<td></td>
<td>24 jam</td>
<td>-458.3244</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>455.4256</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>619.4256</td>
</tr>
<tr>
<td>72 jam</td>
<td>kontrol CMC 1%</td>
<td>146.1756</td>
</tr>
<tr>
<td></td>
<td>24 jam</td>
<td>-1003.8244</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>-635.5744</td>
</tr>
<tr>
<td></td>
<td>96 jam</td>
<td>73.9256</td>
</tr>
<tr>
<td>96 jam</td>
<td>kontrol CMC 1%</td>
<td>-17.8244</td>
</tr>
<tr>
<td></td>
<td>24 jam</td>
<td>-1167.8244</td>
</tr>
<tr>
<td></td>
<td>48 jam</td>
<td>-799.5744</td>
</tr>
<tr>
<td></td>
<td>72 jam</td>
<td>-254.0744</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.
Lampiran 8

Hasil analisis statistik penetapan lama praperlakuan jus buah apel hijau

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>4</td>
<td>75.000</td>
<td>6.8313</td>
<td>3.4157</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>1225.7500</td>
<td>120.9721</td>
<td>60.4861</td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>481.0000</td>
<td>65.0179</td>
<td>32.5090</td>
</tr>
<tr>
<td>JBAH 4 hari</td>
<td>4</td>
<td>156.2500</td>
<td>14.7958</td>
<td>7.3979</td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>172.2500</td>
<td>9.1059</td>
<td>4.5529</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>70.0000</td>
<td>5.0990</td>
<td>2.5495</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>51.0000</td>
<td>4.5461</td>
<td>2.2730</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>318.7500</td>
<td>404.4687</td>
<td>76.4374</td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>95% Confidence Interval for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>kontrol CMC 1%</td>
<td>64.1299</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>1033.2564</td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>377.5419</td>
</tr>
<tr>
<td>JBAH 4 hari</td>
<td>132.7065</td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>157.7605</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>61.8863</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>43.7662</td>
</tr>
<tr>
<td>Total</td>
<td>161.9134</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th></th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levene Statistic</td>
<td>3.369</td>
<td>6</td>
<td>21</td>
</tr>
</tbody>
</table>
ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>4359293.0</td>
<td>6</td>
<td>726548.833</td>
<td>264.107</td>
</tr>
<tr>
<td>Within Groups</td>
<td>57770.250</td>
<td>21</td>
<td>2750.964</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4417063.3</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPar Tests

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th>SGPT</th>
<th>N</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Parameters<sup>a</sup>,<sup>b</sup></td>
<td>Mean</td>
<td>318.7500</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>404.4687</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td>Absolute</td>
<td>.344</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>.344</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>-.249</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>1.819</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
<td></td>
</tr>
</tbody>
</table>

^a Test distribution is Normal.

^b Calculated from data.

NPar Tests

Kruskal-Wallis Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT kontrol CMC 1%</td>
<td>4</td>
<td>9.38</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>26.50</td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>22.50</td>
</tr>
<tr>
<td>JBAH 4 hari</td>
<td>4</td>
<td>15.25</td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>17.75</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>7.63</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics\(^a,b\)

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>25.819</td>
</tr>
<tr>
<td>df</td>
<td>6</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

- a. Kruskal Wallis Test
- b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>kontrol parasetainol</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029(^a)</td>
</tr>
</tbody>
</table>

- b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029(^a)</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT kontrol CMC 1%</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>JBAH 4 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029(^a)</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT kontrol CMC 1%</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statisticsb

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029a</td>
</tr>
</tbody>
</table>

a Not corrected for ties.
b Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>4</td>
<td>5.38</td>
<td>21.50</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>3.63</td>
<td>14.50</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statisticsb

<table>
<thead>
<tr>
<th></th>
<th>SGFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>4.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>14.560</td>
</tr>
<tr>
<td>Z</td>
<td>-1.016</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.309</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>3.43a</td>
</tr>
</tbody>
</table>

a Not corrected for ties.
b Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 4 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th>Mann-Whitney U</th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Mann-Whitney U</th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 4 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 2 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>0.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>0.029<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Not corrected for ties.

^b Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td>JBAH 2 hari</td>
<td>4</td>
<td>6.50</td>
</tr>
<tr>
<td></td>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Test Statisticsⁿ

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>0.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>0.029<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Not corrected for ties.

ⁿ Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td>JBAH 4 hari</td>
<td>4</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>JBAH 6 hari</td>
<td>4</td>
<td>5.75</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>3.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>13.000</td>
</tr>
<tr>
<td>Z</td>
<td>-1.443</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.149</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed</td>
<td>.200(^a)</td>
</tr>
<tr>
<td>Sig.])</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.

\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT JBAH 4 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed</td>
<td>.029(^a)</td>
</tr>
<tr>
<td>Sig.])</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.

\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT JBAH 4 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 8 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 6 hari</td>
<td>4</td>
<td>6.50</td>
<td>26.00</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT JBAH 8 hari</td>
<td>4</td>
<td>6.50</td>
<td>28.00</td>
</tr>
<tr>
<td>JBAH 10 hari</td>
<td>4</td>
<td>2.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>SGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>10.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.309</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.021</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.029*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK
Lampiran 9

Hasil analisis statistik praperlakuan jus apel hijau pada mencit jantan terinduksi parasetamol

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>5</td>
<td>73.6000</td>
<td>5.1284</td>
<td>2.2935</td>
</tr>
<tr>
<td>kontrol JBAH 25,00 kg/BB</td>
<td>5</td>
<td>177.0000</td>
<td>17.5214</td>
<td>7.8358</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>5</td>
<td>1296.8000</td>
<td>43.7001</td>
<td>19.5433</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>804.0000</td>
<td>15.1658</td>
<td>6.7823</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>583.6000</td>
<td>20.3912</td>
<td>9.1192</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>405.0000</td>
<td>25.1098</td>
<td>11.2294</td>
</tr>
<tr>
<td>JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>261.4000</td>
<td>39.6081</td>
<td>17.7133</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>514.4857</td>
<td>400.1834</td>
<td>67.6433</td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th></th>
<th>95% Confidence Interval for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>kontrol CMC 1%</td>
<td>67.2323</td>
</tr>
<tr>
<td>kontrol JBAH 25,00 kg/BB</td>
<td>155.2443</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>1242.591</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>785.1692</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>558.2810</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>373.8221</td>
</tr>
<tr>
<td>JBAH 25,00 g/kgBB</td>
<td>212.2201</td>
</tr>
<tr>
<td>Total</td>
<td>377.0179</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.745</td>
<td>6</td>
<td>26</td>
<td>.007</td>
</tr>
</tbody>
</table>
ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>5424636.3</td>
<td>6</td>
<td>904106.057</td>
<td>1243.832</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>20352.400</td>
<td>28</td>
<td>726.871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5444988.7</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPar Tests

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35</td>
</tr>
<tr>
<td>Normal Parameters a b</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>514.4857</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>400.1834</td>
</tr>
<tr>
<td>Most Extreme</td>
<td></td>
</tr>
<tr>
<td>Differences</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.151</td>
</tr>
<tr>
<td>Positive</td>
<td>.151</td>
</tr>
<tr>
<td>Negative</td>
<td>-.132</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>.894</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>4.01</td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data.

NPar Tests

Kruskal-Wallis Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
</tr>
<tr>
<td>kontrol JBAH 25,00 kg/BB</td>
<td>5</td>
<td>8.00</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>5</td>
<td>33.00</td>
</tr>
<tr>
<td>JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>28.00</td>
</tr>
<tr>
<td>JBAH 1.56 g/kgBB</td>
<td>5</td>
<td>23.00</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>18.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>13.00</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Test Statisticsa,b

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>33.333</td>
</tr>
<tr>
<td>df</td>
<td>6</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Kruskal Wallis Test
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>kontrol J6AH 25,00 kg/BB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statisticsb

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.

b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.

b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol CMC 1%</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH25.00 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.006*</td>
</tr>
</tbody>
</table>

*a. Not corrected for ties.
*b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol JBAH 25,00 kg/BB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>kontrol parasetamol</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.006*</td>
</tr>
</tbody>
</table>

*a. Not corrected for ties.
*b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol JBAH 25,00 kg/BB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>0.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>0.008a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol JBAH 25,00 kg/BB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 1.56 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>0.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>0.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>0.008a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol JBAH 25,00 kg/BB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol JBAH 25.00 kg/BB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH25.00 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol parasetamol</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th>GPT</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>Exact Sig. [2*(1-tailed Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.000</td>
<td>15.000</td>
<td>-2.611</td>
<td>.009</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>GPT</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>Exact Sig. [2*(1-tailed Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.000</td>
<td>15.000</td>
<td>-2.611</td>
<td>.009</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT kontrol parasetamol</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 1.56 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.

\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.

\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008 a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests
Mann-Whitney Test
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 1.56 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>8.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008 a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests
Mann-Whitney Test
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 1.56 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>8.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>
Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 8,25 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>GPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.611</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.009</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK
Lampiran 10

Tabel X. Rangkuman hasil analisis aktivitas GPT-serum mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol dengan uji Mann-Whitney

<table>
<thead>
<tr>
<th>Kelompok yang Dibandingkan</th>
<th>Harga p</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-II</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-III</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-IV</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-V</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-VI</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-VII</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-III</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-IV</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-V</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-VI</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-VII</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-IV</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-V</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-VI</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-VII</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>IV-V</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>IV-VI</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>IV-VII</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>V-VI</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>V-VII</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>VI-VII</td>
<td>0,009</td>
<td>Berbeda bermakna</td>
</tr>
</tbody>
</table>

Keterangan:
I = kontrol negatif CMC 1% 0,33 g/kgBB
II = kontrol jus buah apel hijau 25,0 g/kgBB
III = kontrol positif parasetamol 0,259 g/kgBB
IV = jus buah apel hijau 0,39 g/kgBB + parasetamol 0,250 g/kgBB
V = jus buah apel hijau 1,56 g/kgBB + parasetamol 0,250 g/kgBB
VI = jus buah apel hijau 6,25 g/kgBB + parasetamol 0,250 g/kgBB
VII = jus buah apel hijau 25,0 g/kgBB + parasetamol 0,250 g/kgBB
Lampiran 11

Tabel XI. Data skoring gambaran histopatologi sel hati menurut derajat kerusakannya pada mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol 0,250 g/kgBB

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Keterangan:
I = kontrol negatif CMC 1% 0,33 g/kgBB
II = kontrol jus buah apel hijau 25,0 g/kgBB
III = kontrol positif parasetamol 0,259 g/kgBB
IV = jus buah apel hijau 0,39 g/kgBB + parasetamol 0,250 g/kgBB
V = jus buah apel hijau 1,56 g/kgBB + parasetamol 0,250 g/kgBB
VI = jus buah apel hijau 6,25 g/kgBB + parasetamol 0,250 g/kgBB
VII = jus buah apel hijau 25,0 g/kgBB + parasetamol 0,250 g/kgBB

Skor:
1 = Relatif normal
2 = degenerasi melemak (+) dan peradangan (+)
3 = degenerasi melemak (+++) dan peradangan (+++)
4 = degenerasi melemak (+) dan peradangan (+++)
5 = degenerasi melemak (+++), peradangan (+++) dan nekrosis (+)
6 = degenerasi melemak (+++), peradangan (+++) dan nekrosis (+++)

Penanggung jawab

(dr. Luciana Kuswibawati, M.Kes)
Lampiran 12

Hasil analisis statistik data skoring histopatologi sel hati mencejut jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol

Descriptives

<table>
<thead>
<tr>
<th>SKOR</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol CMC 1% 0,33 g/kgBB</td>
<td>5</td>
<td>1.2000</td>
<td>0.4472</td>
<td>0.2000</td>
</tr>
<tr>
<td>kontrol JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>2.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>kontrol parasetamol 0,250 g/kgBB</td>
<td>5</td>
<td>6.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>5.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>3.8000</td>
<td>0.4472</td>
<td>0.2000</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>3.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>2.2000</td>
<td>0.4472</td>
<td>0.2000</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>3.3143</td>
<td>1.6409</td>
<td>0.2774</td>
</tr>
</tbody>
</table>

Descriptives

<table>
<thead>
<tr>
<th>SKOR</th>
<th>95% Confidence Interval for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>kontrol CMC 1% 0,33 g/kgBB</td>
<td>.6447</td>
</tr>
<tr>
<td>kontrol JBAH 25,00 g/kgBB</td>
<td>2.0000</td>
</tr>
<tr>
<td>kontrol parasetamol 0,250 g/kgBB</td>
<td>6.0000</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>5.0000</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>3.2447</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>3.0000</td>
</tr>
<tr>
<td>JBAH 25,00 g/kgBB</td>
<td>1.6447</td>
</tr>
<tr>
<td>Total</td>
<td>2.7506</td>
</tr>
</tbody>
</table>
Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.741</td>
<td>6</td>
<td>28</td>
<td>.002</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>89.143</td>
<td>6</td>
<td>14.857</td>
<td>173.333</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>2.400</td>
<td>28</td>
<td>8.571E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>91.543</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPar Tests

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>SKOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35</td>
</tr>
<tr>
<td>Normal Parameters(^a,b)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.3143</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.6409</td>
</tr>
<tr>
<td>Most Extreme</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.188</td>
</tr>
<tr>
<td>Differences</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>.188</td>
</tr>
<tr>
<td>Negative</td>
<td>-.134</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>1.115</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.167</td>
</tr>
</tbody>
</table>

\(^a\) Test distribution is Normal.
\(^b\) Calculated from data.

NPar Tests

Kruskal-Wallis Test
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol CMC 1% 0.33 g/kgBB</td>
<td>5</td>
<td>3.90</td>
</tr>
<tr>
<td>kontrol JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>9.50</td>
</tr>
<tr>
<td>kontrol parasetamol 0.250 g/kgBB</td>
<td>5</td>
<td>33.00</td>
</tr>
<tr>
<td>JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>28.00</td>
</tr>
<tr>
<td>JBAH 1.56 g/kgBB</td>
<td>5</td>
<td>22.40</td>
</tr>
<tr>
<td>JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>18.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>11.20</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^{a,b}\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>32.798</td>
</tr>
<tr>
<td>df</td>
<td>6</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

\(^a\) Kruskal Wallis Test
\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol CMC 1% 0.33 g/kgBB</td>
<td>5</td>
<td>3.50</td>
<td>17.50</td>
</tr>
<tr>
<td>kontrol JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>7.50</td>
<td>37.50</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>17.500</td>
</tr>
<tr>
<td>Z</td>
<td>-2.449</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.014</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.032(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.
\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kontrol CMC 1% 0,33 g/kg9B</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>kontrol parasetamol 0,250 g/kg9B</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.887</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.004</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.
\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol CMC 1% 0,33 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.887</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.004</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Not corrected for ties.

^b Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKCR kontrol CMC 1% 0,33 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.785</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.005</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Not corrected for ties.

^b Grouping Variable: KELOMPOK
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol CMC 1% 0.33 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>SKOR</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>Exact Sig. [2*(1-tailed Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.000</td>
<td>15.000</td>
<td>-2.887</td>
<td>.004</td>
<td>.008a</td>
</tr>
</tbody>
</table>

* a. Not corrected for ties.
* b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol CMC 1% 0.33 g/kgBB</td>
<td>5</td>
<td>3.40</td>
<td>17.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>7.60</td>
<td>38.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th>SKOR</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>Exact Sig. [2*(1-tailed Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.000</td>
<td>17.000</td>
<td>-2.425</td>
<td>.015</td>
<td>.032a</td>
</tr>
</tbody>
</table>

* a. Not corrected for ties.
* b. Grouping Variable: KELOMPOCK
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol JBAH 25,00 25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>kontrol parasetamol 0,250 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-3.000</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
</tr>
<tr>
<td>Exact Sig. [Z(1-tailed Sig.)]</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol JBAH 25,00 25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-3.000</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
</tr>
<tr>
<td>Exact Sig. [Z(1-tailed Sig.)]</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests
Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\text{b}

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.887</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.004</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008</td>
</tr>
</tbody>
</table>

\text{a} Not corrected for ties.

\text{b} Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\text{b}

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-3.000</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008</td>
</tr>
</tbody>
</table>

\text{a} Not corrected for ties.

\text{b} Grouping Variable: KELOMPOK
Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>5.00</td>
<td>25.00</td>
</tr>
<tr>
<td>JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>6.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>25.000</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-1.000</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.317</td>
<td></td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.690(^a)</td>
<td></td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol parasetamol 0,250 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 0.39 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.000</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-3.000</td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
<td></td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests
Mann-Whitney Test

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol 0,250 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>Exact Sig. [2*(1-tailed Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>.000</td>
<td>15.000</td>
<td>-2.887</td>
<td>.004</td>
<td>.008(^a)</td>
</tr>
<tr>
<td>0,250 g/kgBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.
\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol 0,250 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th>Mann-Whitney U</th>
<th>Wilcoxon W</th>
<th>Z</th>
<th>Asymp. Sig. (2-tailed)</th>
<th>Exact Sig. [2*(1-tailed Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrol parasetamol</td>
<td>.000</td>
<td>15.000</td>
<td>-3.000</td>
<td>.003</td>
<td>.008(^a)</td>
</tr>
<tr>
<td>0,250 g/kgBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.
\(^b\) Grouping Variable: KELOMPOK
Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR kontrol parasetamol 0,250 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>SKOR JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.887</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.004</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>SKOR JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.887</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.004</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008*</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests
Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-3.00</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.003</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.
\(^b\) Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR JBAH 0,39 g/kgBB</td>
<td>5</td>
<td>8.00</td>
<td>40.00</td>
</tr>
<tr>
<td>JBAH 25,00 g/kgBB</td>
<td>5</td>
<td>3.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.00</td>
</tr>
<tr>
<td>Z</td>
<td>-2.887</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.004</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.
\(^b\) Grouping Variable: KELOMPOK

NPar Tests
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>7.50</td>
<td>37.50</td>
</tr>
<tr>
<td>JBAH 6,25 g/kgBB</td>
<td>5</td>
<td>3.50</td>
<td>17.50</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics^b

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>17.500</td>
</tr>
<tr>
<td>Z</td>
<td>-2.449</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.014</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.032^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test

Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR JBAH 1,56 g/kgBB</td>
<td>5</td>
<td>7.90</td>
<td>39.50</td>
</tr>
<tr>
<td>JBAH 25,0C g/kgBB</td>
<td>5</td>
<td>3.10</td>
<td>15.50</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics^b

<table>
<thead>
<tr>
<th>SKOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>15.500</td>
</tr>
<tr>
<td>Z</td>
<td>-2.683</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.007</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.008^a</td>
</tr>
</tbody>
</table>

a. Not corrected for ties.
b. Grouping Variable: KELOMPOK

NPar Tests

Mann-Whitney Test
Ranks

<table>
<thead>
<tr>
<th>KELOMPOK</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOR JBAH 6.25 g/kgBB</td>
<td>5</td>
<td>7.50</td>
<td>37.50</td>
</tr>
<tr>
<td>SKOR JBAH 25.00 g/kgBB</td>
<td>5</td>
<td>3.50</td>
<td>17.50</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>SKOR</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>2.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>17.500</td>
</tr>
<tr>
<td>Z</td>
<td>-2.449</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.014</td>
</tr>
<tr>
<td>Exact Sig. [2(^a);1-tailed Sig.]</td>
<td>.032 (^\text{a})</td>
</tr>
</tbody>
</table>

\(^a\) Not corrected for ties.

\(^b\) Grouping Variable: KELOMPOK
Lampiran 13

Tabel XII. Hasil pengamatan mikroskopsis sel hati mencit jantan setelah praperlakuan jus buah apel hijau terinduksi parasetamol

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Perubahan yang terjadi pada sel hati mencit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Degenerasi melemak, peradangan</td>
</tr>
<tr>
<td>II</td>
<td>Degenerasi melemak, peradangan</td>
</tr>
<tr>
<td>III</td>
<td>Nekrosis, hemorrhagi, degenerasi melemak, dan peradangan</td>
</tr>
<tr>
<td>IV</td>
<td>Degenerasi melemak, nekrosis, hemorrhagi, dan peradangan</td>
</tr>
<tr>
<td>V</td>
<td>Degenerasi melemak, hemorrhagi, dan peradangan</td>
</tr>
<tr>
<td>VI</td>
<td>Degenerasi melemak dan peradangan</td>
</tr>
<tr>
<td>VII</td>
<td>Degenerasi melemak dan peradangan</td>
</tr>
</tbody>
</table>

Keterangan:

I = kontrol negatif CMC 1% 0,33 g/kgBB
II = kontrol jus buah apel hijau 25,0 g/kgBB
III = kontrol positif parasetamol 0,259 g/kgBB
IV = jus buah apel hijau 0,39 g/kgBB + parasetamol 0,250 g/kgBB
V = jus buah apel hijau 1,56 g/kgBB + parasetamol 0,250 g/kgBB
VI = jus buah apel hijau 6,25 g/kgBB + parasetamol 0,250 g/kgBB
VII = jus buah apel hijau 25,0 g/kgBB + parasetamol 0,250 g/kgBB
Lampiran 14

Tabel XIII. Gambaran makroskopis organ hati mencit sesaat setelah dibedah akibat praperlakuan jus buah apel hijau 1x sehari selama 6 hari berturut-turut terinduksi parasetamol 0,250 g/kgBB

<table>
<thead>
<tr>
<th>K</th>
<th>Perlakuan</th>
<th>Gambaran makroskopi organ hati</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CMC 1% 0,33 g/kgBB</td>
<td>merah tua, ada sedikit bintik dan bercak merah, dan jika ditekan terasa kenyal.</td>
</tr>
<tr>
<td>II</td>
<td>JBAH 25,0 g/kgBB</td>
<td>merah tua, ada sedikit bintik dan bercak merah, dan jika ditekan terasa kenyal.</td>
</tr>
<tr>
<td>III</td>
<td>Parasetamol 0,250 g/kgBB</td>
<td>coklat tua, ada banyak bintik merah dan bercak merah kehitaman seperti hangus, dan jika ditekan terasa keras.</td>
</tr>
<tr>
<td>IV</td>
<td>JBAH 0,39 g/kgBB + parasetamol</td>
<td>coklat tua, ada banyak bintik merah dan bercak merah kehitaman seperti hangus, dan jika ditekan terasa keras.</td>
</tr>
<tr>
<td>V</td>
<td>JBAH 1,56 g/kgBB + parasetamol</td>
<td>merah kecoklatan, ada banyak bintik merah dan bercak merah, dan jika ditekan terasa keras.</td>
</tr>
<tr>
<td>VI</td>
<td>JBAH 6,25 g/kgBB + parasetamol</td>
<td>merah tua, ada banyak bintik merah dan bercak merah, dan jika ditekan terasa keras.</td>
</tr>
<tr>
<td>VII</td>
<td>JBAH 25,0 g/kgBB+ parasetamol</td>
<td>merah tua, ada sedikit bintik merah dan bercak merah, dan jika ditekan terasa keras.</td>
</tr>
</tbody>
</table>

Keterangan: JBAH = jus buah apel hijau; K = kelompok
Lampiran 15

Tabel XIV. Rangkuman hasil analisis data skoring dengan uji Mann-Whitney

<table>
<thead>
<tr>
<th>Kelompok yang Dibandingkan</th>
<th>Harga p</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-II</td>
<td>0,014</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-III</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-IV</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-V</td>
<td>0,005</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-VI</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>I-VII</td>
<td>0,015</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-III</td>
<td>0,003</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-IV</td>
<td>0,003</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-V</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-VI</td>
<td>0,003</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>II-VII</td>
<td>0,317</td>
<td>Berbeda tidak bermakna</td>
</tr>
<tr>
<td>III-IV</td>
<td>0,003</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-V</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-VI</td>
<td>0,003</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>III-VII</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>IV-V</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>IV-VI</td>
<td>0,003</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>IV-VII</td>
<td>0,004</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>V-VI</td>
<td>0,014</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>V-VII</td>
<td>0,007</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>VI-VII</td>
<td>0,014</td>
<td>Berbeda bermakna</td>
</tr>
</tbody>
</table>

Keterangan:
I = kontrol negatif CMC 1% 0,33 g/kgBB
II = kontrol jus buah apel hijau 25,0 g/kgBB
III = kontrol positif parasetamol 0,259 g/kgBB
IV = jus buah apel hijau 0,39 g/kgBB + parasetamol 0,250 g/kgBB
V = jus buah apel hijau 1,56 g/kgBB + parasetamol 0,250 g/kgBB
VI = jus buah apel hijau 6,25 g/kgBB + parasetamol 0,250 g/kgBB
VII = jus buah apel hijau 25,0 g/kgBB + parasetamol 0,250 g/kgBB
Lampiran 16

Perhitungan % angka proteksi

<table>
<thead>
<tr>
<th>Skor (derajat kerusakan sel hati)</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Jumlah</td>
<td>6</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angka proteksi (%)</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Rata-rata skor</td>
<td>1,2</td>
</tr>
<tr>
<td>Angka proteksi (%)</td>
<td>100</td>
</tr>
</tbody>
</table>

Rumus % angka proteksi:

\[
\frac{\text{Rerata skor kelompok perlakuan} - \text{rerata skor kontrol parasetamol}}{\text{Rerata skor kontrol parasetamol}} \times 100\%
\]

Contoh perhitungan:

\[
\frac{5,0 - 6,0}{6,0} \times 100\% = 16,67\%
\]

\[
\frac{2,2 - 6,0}{6,0} \times 100\% = 63,33\%
\]
Lampiran 17

Perhitungan efektif dosis tengah (ED$_{50}$) hepatoprotektif jus buah apel hijau pada mencit jantan terinduksi parasetamol

Tabel XV. Dosis, log dose, % efek hepatoprotektif, dan nilai probit pada masing-masing kelompok perlakuan

<table>
<thead>
<tr>
<th>Kelompok perlakuan</th>
<th>Dosis (mg/kgBB)</th>
<th>Log dose</th>
<th>efek hepatoprotektif (%)</th>
<th>Nilai probit</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBAH (0,39 g/KgBB)+para</td>
<td>390</td>
<td>2,591</td>
<td>38,0</td>
<td>4,69</td>
</tr>
<tr>
<td>JBAH (1,56 g/KgBB)+para</td>
<td>1560</td>
<td>3,193</td>
<td>54,99</td>
<td>5,13</td>
</tr>
<tr>
<td>JBAH (6,25 g/KgBB)+para</td>
<td>6250</td>
<td>3,795</td>
<td>68,76</td>
<td>5,47</td>
</tr>
<tr>
<td>JBAH (25,0 g/KgBB)+para</td>
<td>25000</td>
<td>4,397</td>
<td>83,31</td>
<td>5,95</td>
</tr>
</tbody>
</table>

Linear Regression log dose vs probit:
- $A = 2,918$
- $B = 0,684$
- $R = 0,998$

Persamaan linear:
- $Y = Bx + A$
- $Y = 0,684x + 2,918$

Efek hepatoprotektif sebesar 50% memberikan nilai probit (Y)=5 maka:
- $5 = 0,684x + 2,918$
- $x = 3,043$

Dosis yang menimbulkan 50% efek hepatoprotektif adalah:
- $ED_{50} = \text{antilog } 3,043$
- $ED_{50} = 1104,07 \text{mg/kgBB}$
- $ED_{50} = 1,104 \text{ g/kgBB}$

Jadi, efektif dosis (ED$_{50}$) hepatoprotektif jus apel hijau pada mencit jantan terinduksi parasetamol 0,250 g/kgBB adalah 1,104 g/kgBB.
BIOGRAFI PENULIS
