Daftar Isi

<table>
<thead>
<tr>
<th>Kata Pengantar</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daftar isi</td>
<td>ii</td>
</tr>
<tr>
<td>Pola Frekuensi Dasar Suara Penyiar Radio Indonesia</td>
<td>Yohanes Suyanto Dan Agus Harjoko</td>
</tr>
<tr>
<td>Sistem Pengukuran Lebar Cortical Bone Berbasis Active Shape Model Pada Citra Panorama Gigi</td>
<td>Agus Zainal Arifin, Gede Wiry Wardhana, Dini Adni Navastara, Hudan Studiawan</td>
</tr>
<tr>
<td>Evaluasi Penerimaan Sistem Informasi Dengan Pendekatan Teori Technology Acceptance Model (Tam) (Studi Kasus: Sistem Informasi Penasehat Akademik Universitas Budi Luhur)</td>
<td>Dyah Retno Utari, Arief Wibowo</td>
</tr>
<tr>
<td>Perbandingan Kinerja Basis Data Berorientasi-Objek Dengan Basis Data Relasional Studi Kasus: Aplikasi Jpetstore</td>
<td>Petrus Mursanto, Muntasir Rahman</td>
</tr>
<tr>
<td>Pengembangan Sistem Penunjang Keputusan Untuk Prediksi Produksi Madu Hutan Di Taman Nasional Danau Sentarum: Kerangka Konsep</td>
<td>Ambar Yoganingrum, Dana Indra Sensuse</td>
</tr>
<tr>
<td>Algoritma Kendali Sistem Pengisian Tabung Bahan Bakar Untuk Aplikasi Generator Dengan Konsep Dual Fuel</td>
<td>Aam Muharam, Widodo Budi Santoso, Achmad Praptijanto</td>
</tr>
<tr>
<td>Optimasi Irrigasi Sawah Dengan Menggunakan Algoritma Genetik</td>
<td>Bilqis Amaliah, Chastine Fatichah, Agus Zainal A, Eka Gibran Hasany, Maula N. M. Fachrurozie</td>
</tr>
<tr>
<td>Dashboard Tata Laksana Proses Bisnis Perusahaan</td>
<td>Achmad Holil Noor Ali, Anisah Herdiyanti</td>
</tr>
<tr>
<td>Implementasi Personal Preference Pada Sistem Share-It Berbasis Pada Platform Unix</td>
<td>Ary Mazharuddin S. – Yudhi Purwananto – Agus Purwono</td>
</tr>
<tr>
<td>Penerapan Dan Perbandingan Metode Average Filter Dan Metode Median Filter Untuk Mengurangi Noise Pada Citra Digital</td>
<td>Wiwin Sulistyo, Yos Richard Beeh, Filipus Frans Y.</td>
</tr>
<tr>
<td>Preparasi Ba${0.6}$Sr${0.5}$TiO$_3$ Dan Karakterisasinya Dengan Xrd</td>
<td>Dwi Nugraheni Rosiawati, Djoko Triono</td>
</tr>
<tr>
<td>Evaluasi Kesuksesan Sistem Informasi Dengan Pendekatan Model Delone Dan Mclean (Studi Kasus Implementasi Billing System Di RSUD Kabupaten Sragen)</td>
<td>Budiyanto, Rahmawati, Santoso Tri Hananto</td>
</tr>
<tr>
<td>Sistem Informasi Nilai Mahasiswa Dengan Menggunakan Aplikasi Sns Gateway</td>
<td>Indri Neforawati, Hoga Saragih</td>
</tr>
</tbody>
</table>
PREPARASI $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ DAN KARAKTERISASINYA DENGAN XRD

Dwi Nugraheni Rositawati1, Djoko Triyono2

1Program Studi Fisika Fakultas Sains dan Teknologi Universitas Sanata Dharma
e-mail: wiiwk_fis@staff.usd.ac.id
2Departemen Fisika FMIPA Universitas Indonesia
e-mail:djoko.triyono@fisika.ui.ac.id

ABSTRAK

Telah dilakukan preparasi keramik $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ untuk aplikasi PTC Thermistor. Preparasi $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ dilakukan dari campuran bubuk BaCO_3, SrCO_3 dan TiO_2 yang di milling selama 4 jam dan dikalsinasi pada 1100°C selama 4 jam. Bubuk yang sudah dikalsinasi dicampur dengan PVA dan kemudian dikompaksi menjadi pellet dengan tekanan 4 ton/cm² dan ditanah selama 30 detik. Karakteristik PTC yang menarik adalah efek dimana resistansi suatu material akan naik secara signifikan apabila material tersebut mengalami kenaikan temperatur. Supaya diperoleh karakteristik kelistrikan terhadap temperatur pada material PTC yang lengkap maka penting untuk diikuti struktur kristal dari material tersebut pada variasi temperatur dan waktu sintering. Sintering pada pellet dilakukan pada variasi temperatur dan waktu sintering yaitu 1200 °C selama 1, 2 dan 3 jam serta 1300 °C selama 2 jam, dengan kecepatan pemanasan dan pendinginan 40°C/ menit.

Dari Karakterisasi XRD yang dilakukan pada $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ dapat diketahui bahwa $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ yang telah dibuat mempunyai fase tunggal dengan struktur kubus sederhana dengan bidang-bidang yang ditemukan adalah (100), (110), (111), (200), (210) dan (211) serta dapat diketahui bahwa temperatur dan waktu Sintering tidak mengubah fasa dan struktur $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$.

Key words/ Kata Kunci: $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$, Sintering, XRD, Struktur kristal

1. PERDAHULUAN

Dewasa ini perkembangan ilmu pengetahuan semakin banyak dan beragam. Perkembangan tersebut tentunya tidak terlepas dari perkembangan penemuan-penemuan sifat-sifat menarik dari suatu material sebagai bahan dasar. Barium Strontium Titanate dengan rumus kimia BaSrTiO_3 atau yang lebih dikenal dengan istilah BST adalah salah satu jenis material keramik yang menarik untuk diteliti. BST merupakan material ferroelektrik yang termasuk ke dalam jenis perovskite yang diturunkan dari Barium Titanate (BaTiO_3) yang didoping dengan Strontium (Sr).

Penelitian terus berlanjut seturut dengan perkembangan penelitian material Barium Titanate (BaTiO_3) yaitu dengan diketemukannya berbagai sifat menarik diantaranya adalah bahan ini sangat praktis karena sifat kimia dan mekaniknya sangat stabil, mempunyai sifat ferroelektrik pada temperatur ruang sampai dengan 120°C. Aplikasi material Barium Titanate (BaTiO_3) meliputi bidang termal, listrik, elektro mekanik, dan elektro optis yaitu sebagai PTC (Positive Temperature Coefficient) thermistor (Bomia, P. et al, 2004), transduser piezelektrik, peralatan elektro optis, multilayer capacitor (MLCs), dielectric bolometers for infrared detection, dynamic random access memories (DRAM) (Hungria, T, 2005) dan tunable capacitor untuk teknologi microwave (Zhu, 2003).

Barium Titanate dan turunannya dapat dibuat dengan berbagai metode seperti sputtering dan spin coating, pulsed laser deposition (PLD) (Lopez, LL. et al, 2000), Mechanosynthesis powder, chemical vapor deposition (CVD), chemical solution deposition (CSD), dan sol gel (Tian, HY. et al, 2002). Preparasi material yang digunakan pada penelitian ini adalah dengan metode Mechanosynthesis powder. Aplikasi dari material $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ pada penelitian ini adalah sebagai PTC thermistor. Hal menarik dari sifat sebagai PTC adalah suatu efek dimana resistansi suatu material akan naik secara signifikan apabila material tersebut mengalami kenaikan temperatur (Wang, HL, 2002). Supaya diperoleh karakteristik
kelistrikan terhadap temperatur pada material PTC yang lengkap maka penting untuk diketahui struktur kristal dari material tersebut pada variasi temperatur dan waktu sintering. Dengan demikian perlu dilakukan penelitian yang bertujuan untuk:

1. Preparasi material Ba$_{0.8}$Sr$_{0.5}$TiO$_3$.
2. Menentukan struktur kristal dari sampel Ba$_{0.8}$Sr$_{0.5}$TiO$_3$ bubuk maupun pellet yang diperoleh dari proses sintering.
3. Mengetahui pengaruh temperatur dan waktu Sintering terhadap fasa dan struktur kristal Ba$_{0.8}$Sr$_{0.5}$TiO$_3$.

Barium titanat (BaTiO$_3$) adalah suatu material yang bersifat ferroelektrik dan mempunyai struktur kristal perovskite dengan rumus umum $(A_1\ldots A_0)(B_1\ldots B_0)O_3$ dimana $A =$ kation valensi 1 s/d 2 dan $B =$ kation valensi 3 s/d 7 (Sen, S. et al, 2004). Struktur tersebut dianggap sebagai struktur turunan FCC yang mempunyai kation A dan oksigen bersama-sama membentuk kisi FCC sementara kation B lebih kecil menyisip oktaedral di tengah kisi FCC. Unit selnya diperlihatkan seperti Gambar 1.

![Struktur perovskite BaTiO$_3$ (Wang, HL, 2002)](image)

Material barium titanat perlu didoping untuk memperoleh sifat-sifat seperti sifat listrik, mekanik, optik dan lain-lain. Doping untuk barium titanat dapat ditentukan dengan mengacu rumus umum struktur perovskite (lihat di atas) yaitu unsur dari golongan 1 s/d 2 untuk kation A atau 3 s/d 7 untuk kation B (Sen, S. et al, 2004). Walaupun begitu, beberapa jenis doping lebih sering digunakan yaitu seperti Pb, Sr, La, Sc, Y, Sb, Nb, Ta dan Sn (Wang, HL, 2002). Pb merupakan salah satu contoh doping yang dapat memperbaiki sifat mekanik material tersebut. Ba$_{0.8}$Sr$_{0.5}$TiO$_3$ merupakan material turunan BaTiO$_3$ yang diperoleh dengan mendoping barium titanat dengan Sr dengan perbandingan komposisi x pada Ba$_{1-x}$Sr$_x$TiO$_3$ adalah 0,5. Doping Sr berguna untuk meningkatkan sifat keistrikan material tersebut. Setelah didoping, BST mempunyai struktur perovskite kubus sederhana dengan parameter kisi a $= 0,395$ nm (Lopez, LL. et al, 2000).

Struktur tersebut dapat diketahui dari atom-atom di dalam kristal yang berada pada bidang-bidang kisi yang dicirikan melalui indeks Miller (hkil). Sinar-X yang terdifraksi oleh bidang kristal mengikuti suatu hukum Bragg yang dirumuskan sebagai:

$$2d \sin(\theta) = n \lambda$$

(1)

Berdasarkan penjajaran tujuan penelitian di atas maka disusun metode penelitian sebagai berikut: Pembuatan material Ba$_{0.8}$Sr$_{0.5}$TiO$_3$ dilakukan dengan menggunakan metode yang dikenal sebagai “Mechanosynthesis powder” (Hungria, T. et al, 2005). Material tersebut dibuat dari bubuk BaCO$_3$ (≥ 98,5%, Merk Sigma-Aldrich), SrCO$_3$ (98%, Merk Aldrich) dan TiO$_2$ (Merk Sigma Aldrich). Proses pencampuran bahan dilakukan dengan menggunakan reaksi pembentukan keramik sebagai berikut:

$$\text{BaCO}_3 + \text{SrCO}_3 + 2\text{TiO}_2 \rightarrow 2\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3 + 2\text{CO}_2$$

Bubuk (powder) BaCO$_3$, SrCO$_3$ dan TiO$_2$ dihaluskan di dalam mortar selama kurang lebih 30 menit kemudian masing-masing bubuk dicampur menjadi satu dengan spatula di dalam mortar. Bubuk campuran yang telah siap kemudian dimilling dengan planetary ball mill

2. PEMBAHASAN

<table>
<thead>
<tr>
<th>2-Theta</th>
<th>d_max (Ba₉₀Sr₀₅TiO₃)</th>
<th>Perhitungan</th>
<th>ICDD</th>
<th>(hkl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22,57</td>
<td>3,9382</td>
<td></td>
<td>3,9494</td>
<td>100</td>
</tr>
<tr>
<td>32,09</td>
<td>2,7883</td>
<td></td>
<td>2,7918</td>
<td>110</td>
</tr>
<tr>
<td>39,57</td>
<td>2,2767</td>
<td></td>
<td>2,2796</td>
<td>111</td>
</tr>
<tr>
<td>46,01</td>
<td>1,9719</td>
<td></td>
<td>1,9737</td>
<td>200</td>
</tr>
<tr>
<td>51,75</td>
<td>1,7659</td>
<td></td>
<td>1,7649</td>
<td>210</td>
</tr>
<tr>
<td>57,12</td>
<td>1,6119</td>
<td></td>
<td>1,6113</td>
<td>211</td>
</tr>
</tbody>
</table>
Data hasil XRD bubuk \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3 \) ditunjukkan pada tabel 1. Tabel tersebut secara spesifik menunjukkan hasil perhitungan \(d_{\text{hlk}} \) untuk puncak-puncak yang diperoleh dan perbandingannya dengan \(d_{\text{hlk}} \) yang diidentifikasi dengan berdasarkan pada data base JCPDS (Joint Committee on Powder Diffraction Standart) - ICDD (card number 39-1395). Pada Gambar 2 diperlihatkan bidang-bidang yang muncul untuk bubuk \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3 \) dan \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3 \) dengan perlakuan \textit{sintering} pada temperatur 1200°C dan 1300°C selama 2 jam yang diperoleh melalui identifikasi nilai \(d_{\text{hlk}} \). Bidang-bidang tersebut setelah dicocokkan dengan data base JCPDS – ICDD dapat diperoleh struktur sebelum dan setelah \textit{sintering} adalah kubus sederhana dengan nilai parameter kisi adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Tabel 2. Nilai parameter kisi (\text{Ba}{0.5}\text{Sr}{0.5}\text{TiO}_3) (bubuk, sintering 1200°C dan 1300°C selama 2 jam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubuk (\text{Ba}{0.5}\text{Sr}{0.5}\text{TiO}_3)</td>
</tr>
<tr>
<td>3.97Å</td>
</tr>
</tbody>
</table>

Gambar 2 juga menunjukkan bahwa intensitas pada grafik hasil XRD \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3 \) dengan \textit{sintering} pada 1300°C cenderung lebih tinggi dari pada \textit{sintering} pada temperatur 1200°C, hal ini menunjukkan bahwa semakin tinggi temperatur \textit{sintering} maka derajat kristalin bahan juga semakin tinggi. Proses \textit{sintering} yang dilakukan mampu mengubah warna bahan yang semula sebagai bubuk putih berubah menjadi berwarna coklat keabuan. Semakin tinggi temperatur sintering menghasilkan warna yang lebih tua.

Kemiripan pola-pola kecenderungan puncak-puncak intensitas dapat diketahui dari Gambar 2 dan setelah dicocokkan dengan data base JCPSD - ICDD ternyata tidak ditemukan adanya kemunculan fasa baru setelah \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3 \) \textit{disintering} pada temperatur 1200°C dan 1300°C. Dengan berpedoman pada nilai parameter kisi yang tidak berubah (Tabel 2) dan adanya kemiripan pola-pola kecenderungan puncak-puncak intensitas pada Gambar 2 maka dapat dikatakan bahwa perlakuan \textit{sintering} pada temperatur 1200°C dan 1300°C tidak mengubah fasa dan struktur dari bubuk (\(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3 \)).
Gambar 3. Grafik hasil XRD $\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3$

Untuk perlakuan *sintering* pada temperatur 1200°C selama 1, 2 dan 3 jam

Dari grafik XRD $\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3$ dengan *sintering* pada temperatur 1200°C dengan variasi waktu *sintering* diperoleh bahwa semakin lama waktu *sintering* akan diperoleh intensitas yang semakin tinggi (nilai intensitas tertinggi adalah pada waktu *sintering* 3 jam), hal ini menunjukkan bahwa semakin lama waktu *sintering* maka derajat kristalin bahan juga semakin tinggi. Struktur setelah perlakuan *sintering* 1200°C adalah kubus sederhana dengan nilai parameter kisinya adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Tabel 3. Nilai parameter kisi (proses sintering pada 1200°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200°C 1 jam</td>
</tr>
</tbody>
</table>

Tabel 3 menunjukkan bahwa waktu *sintering* tidak mengubah nilai parameter kisi. Dengan demikian karena nilai parameter kisinya sama maka strukturnya juga tidak berubah.

3. KESIMPULAN

Berdasarkan penelitian yang dilakukan maka dapat diperoleh kesimpulan sebagai berikut:

1. Bubuk $\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3$ hasil proses kalsinasi berwarna putih. *Sintering* mampu mengubah warna $\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3$ dari putih menjadi coklat keabu-abuan. Semakin tinggi temperatur dan lama sintering akan dihasilkan warna yang semakin tua.
2. Keramik $\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3$ yang telah dibuat mempunyai fasa tunggal dengan struktur kubus sederhana dengan bidang-bidang yang ditemukan adalah (100), (110), (111), (200), (210) dan (211).
3. Temperatur dan waktu *Sintering* tidak mengubah fasa dan struktur $\text{Ba}_{0.8}\text{Sr}_{0.5}\text{TiO}_3$.

73
DAFTAR PUSTAKA

5. Lopez, LL. et al, Ba0.5Sr0.5TiO3 Thin Film Deposited by PLD on SiO2/ Si RuO2/ Si and Pt/ Si Electrodes, Thin Solid Films, 2000, 49-52
7. Sen, S. et al, Impedance Spectroscopy of Ba1-xSr2Sn0.15Ti0.85O3 ceramics, British Ceramics Transactions, Vol.103, No.6, 2004, 250 - 256
8. Tian, HY. et al, Influences of annealing temperature on the optical and structural properties of (Ba, Sr)TiO3 thin films derived from sol-gel technique, Thin Solid Films, 2002, 200-205
10. Wang, HL, Structure and Dielectric Properties of Perovskite–Barium Titanate (BaTiO3), San Jose State University, 2002
11. Yunasfi, Pembuatan Keramik Barium Titanat untuk Peralatan elektronik, Elektro Indonesia, Nomor 35, Tahun VI, Februari 2001

74